
Programming on the Lucata data-first
architecture

Jason Riedy
28 January 2022

Lucata Corporation
(Atlanta branch)
Everything here is my opinion.

Underserved Application: Parallel Graph Analysis

Known issues:

• Scattered memory access w/ small(?) seq. bursts
• Cache lines provide fraction of avail. BW
• Prefetechers fire up then mis-predict

• Large bursts (high degree) ⇒ load imbalance
• Combined with 90% diameter ≤ 8.
• Plenty of load-balancing pre-processing...

• Streaming: The graph is changing.
• Pre-processing can hurt where and when changes
are interesting.

CPU+cache systems have one set of coping mechanisms.
GPGPUs / flex. vectors another. And Lucata has yet more...

Lucata — Riedy — 28 Jan 2022 2/11

The Lucata Pathfinder PGAS architecture

NCDRAM: 64GiB

Memory-Side Proc.

Cores: 24 or so

Migration, I/O, etc.

SC

Node 0

Node 7

Chassis 0

Lucata System

Four chassis system is a 2 TiB NSF
CCRI resource at crnch.gatech.edu

• Optimized for weak locality

• Scattered jumps and seq. access

• Stationary core for OS per node + SSDs

• Hardware partitioned global address space
(PGAS) with a twist

• Plenty of network BW, low latency
• Details in a moment...

• Multithreaded multicore LCE (or GC)

• Currently 1536 threads per node, 12k
per chassis, 50k per 4 chassis.

• “Helps” with load balance
• No cache.

Lucata — Riedy — 28 Jan 2022 3/11

https://crnch-rg.cc.gatech.edu/nsf-ccri/

Lucata’s PGAS Twist for Weak Locality

NCDRAM: 64GiB

Memory-Side Proc.

Cores: 24 or so

Migration, I/O, etc.

SC

Node 0

Node 7

Chassis 0

Lucata System

Four chassis system is a 2 TiB NSF
CCRI resource at crnch.gatech.edu

• Threads write remotely, always read locally

• Writes: 8 Memory-side processors (MSPs)

• Writes+ don’t touch the cores.
• Handle some arithmetic ops. (FPADD)
• Deep queue, no control flow

• Reads ⇒migrate⇐.

• Hardware: Remote read ⇒ package
and send the thread context

• Read latency is local up to migration.
• Control flow depends on reads.
• Contrast with Tera MTA / Cray XMT:
Need far fewer threads, far less
network bandwidth.

Lucata — Riedy — 28 Jan 2022 4/11

https://crnch-rg.cc.gatech.edu/nsf-ccri/

Programming the Beast: Not Painful.

NCDRAM: 64GiB

Memory-Side Proc.

Cores: 24 or so

Migration, I/O, etc.

SC

Node 0

Node 7

Chassis 0

Lucata System

Four chassis system is a 2 TiB NSF
CCRI resource at crnch.gatech.edu

• PGAS: Read and write directly. Everywhere.

• Memory views implemented in hardware

• Intra-node malloc, node-striped
“mw_malloc1d”, node-blocked
“mw_malloc2d ”...

• Implemented by pointer bitfields

• Fork/join parallelism: Cilk+ + extensions

• Fast: Spawning a thread ≈ function
• Composes: “Serial elision.”

• Reached the middle of the Graph500 BFS
list on scale 31 with little effort.

• Scalable: Buy more, scale more.
• https://lucata.com/resources/benchmarks/Lucata — Riedy — 28 Jan 2022 5/11

https://crnch-rg.cc.gatech.edu/nsf-ccri/
https://lucata.com/resources/benchmarks/

Ok, a Little “Painful”

Think differently:
It’s about the data, not the execution units.

• Algorithms typically need working space.
• Decide amount and use that to guide parallelism.
• So scale according to memory!
• Kinda obvious, but amazing how few frameworks
think that way. side-eye at ECP

• Identifying not-quite-locality
• Naïve analysis kernels may migrate excessively.
• Need aggregation-ish ⇒ working space

Lucata — Riedy — 28 Jan 2022 6/11

Sketchy Example: Sparse Matrix Product

class SpGEMM {
// Bind ” global ” th ings and a l loca te s t r i ped workspace
// in the constructor , then . . .
void operator () (s i z e _ t i) {
auto A_i = A [i] ;
const s i z e _ t A_i_deg = A_i . s i z e () ;
if (A_i_deg == 0) return ;

for (auto [k , a_i_k] :
j x_ i te r_adapt <TypeA >(A_i)) {

const s i z e _ t B_k_deg = b_row_buf . set_row (B , k) ;
if (0 == B_k_deg) continue ;

while (auto b_row = b_row_buf . fe tch ()) {
for (auto [j , b_k_j] : b_row) {

TypeC va l ;
mult (val , a_i_k , b_k_j) ;
c_row . accumulate (j , val , add) ; } } }

// Bui ld the C_i block .
c_row . f i l l _ b l o c k (C_i) ;
REMOTE_ADD ((long*)&nvals , C_ i . s i z e ()) ; } } ; // <= A f r eeb i e !

// And eventua l l y . . . (work− in −progress)
lucata : : apply (SpGEMM{C , A , B }) ;

Lucata — Riedy — 28 Jan 2022 7/11

Fun Is in the Details

• lucata::apply(SpGEMMC, A, B);
• Ok, where does the object live? Migrating on
de-referencing *this for members?

• Goes back to views and replication.
• Getting this right is critical but subtle.
• Very work-in-progress, but at least C++ makes it
library-level.

• For C, structures as arguments are clear.
• An extension, cilk_spawn_at, moves the call
frame to be co-located with an address.

Program the data...

Lucata — Riedy — 28 Jan 2022 8/11

More Fun...

• “Atomic” operations
• Any read migrates.
• So an fetch_and_add migrates.
• But a simple REMOTE_ADD does not!

• And never use NODE()...
• Always use data locations, not processing locations.
• Using NODE() can lead to subtle surprises.
• b_row_buf in SpGEMM:

• My first version compared node numbers...
• So the launch location was critical.
• Really wanted to test if pointers were co-located, not
where the computation lives.

Lucata — Riedy — 28 Jan 2022 9/11

And Opportunities...

• Global addressing plus views for re-mapping
parallelism!

• Large-degree vertices cause load-balancing issues.
• But our architecture can stripe those across
memories!

• Don’t need to be SIMD / SIMT
• Many different queries / algs simultaneously
• Think streaming... And no cache coherency...
• Can modify the graph / data while processing1

Again, think of the data and not the processing.
1Chunxing Yin and J.R. Concurrent Katz Centrality for Streaming Graphs. HPEC 2019. DOI 10.1109/HPEC.2019.8916572

Lucata — Riedy — 28 Jan 2022 10/11

https://dx.doi.org/10.1109/HPEC.2019.8916572

Want To Play?

We’re hiring.
Software, hardware, and the whole stack.

There is a 32-node system in CRNCH at Georgia Tech:
https://crnch-rg.cc.gatech.edu/near-memory-and-in-memory/

Of if you want a system for yourself:

• Richard Sheroff <rsheroff@lucata.com>

Lucata — Riedy — 28 Jan 2022 11/11

https://crnch-rg.cc.gatech.edu/near-memory-and-in-memory/

