CircusTent: A Tool for Understanding the
Performance of Atomic Memory Operations

Michael Beebe?, Brody Williams?, John D. Leidel?,
Xi Wang3, David Donofrio?, Yong Chent

ITexas Tech University, 2Tactical Computing Laboratories,
3RISC-V International Open-Source Laboratory

TEXAS TECH
UNIVERSITY.

lactlcal
moans LA RIOS
abs

Motivation

Increasingly heterogenous systems

Distinct components may:
» Utilize different ISAs
* Necessitate the use of disparate APIs for interfacing

* Include supplemental on-device memory hierarchies which may feature irregular
organization

Combination of these distinct memories leads to complex interconnected
memory subsystems

Behavior and performance of these memory subsystems is critical

Motivation Continued

Parallel programming paradigms are ubiquitous to HPC and heterogeneous
systems

Multi-Core architectures are not without shortcomings
* Scalability issues as number of cooperating PEs grow

Unfortunately, these paradigms also necessitate the use of synchronization
methods to ensure correctness

Understanding and optimizing these synchronization methods is key

Atomic Memory Operations

* Atomic memory operations (AMOs) are used to realize these synchronization
primitives
* Barriers, mutex locks, cache coherence mechanisms often built upon atomic operations
* Remote atomics often built on combination of RDMA verbs and local synchronization

* AMOs can also be used for “lock-free” synchronized memory accesses

 Scalability of AMOs and synchronization primitives decreases due to contention
as the number of PEs rises
* Bottleneck for existing systems
* Important design consideration for future systems

The GAP Benchmark Suite, Scott Beamer, Krste Asanovi¢, and David Patterson,
arXiv:1508.03619 [cs.DC], 2015.

Prevalence of AMOs in GAPBS
30

N
Ul

— N
92 o

Proportion (%)
o

Ul

SSSP

Benchmarks

Xi Wang, Brody Williams, John D. Leidel, Alan Ehret, Michel Kinsy, and Yong Chen. 2020.
Remote Atomic Extension (RAE) for Scalable High Performance Computing. In
Proceedings of the 57th Annual Design Automation Conference 2020 (DAC ’20).

Proportion of Remote AMOS in Distributed Scatter

Operation
A[B[i]]=C[i]

100 Local W Remote !

o

O N
=)

U1
o

N
o

w
o

Proportion (%)

N
o

-
o

o

Number of Threads

Xi Wang, Brody Williams, John D. Leidel, Alan Ehret, Michel Kinsy, and Yong Chen. 2020.
Remote Atomic Extension (RAE) for Scalable High Performance Computing. In
Proceedings of the 57th Annual Design Automation Conference 2020 (DAC ’20).

CircusTent

* Atomic benchmark suite for read-modify-write (RMW) atomic memory operations
e Written in C/C++

e Targets API-level AMOs for physically shared and distributed shared memory paradigms
* OpenMP

MPI RMA

OpenSHMEM

xBGAS RISC-V ISA Extension

OpenACC

Pthreads

OpenMP with Target Offloading

OpenCL

* Calculates Billions of Atomic Memory Operations per second (GAMS)

PEs x Iters x AMOs_Per_Iter)/1e”

tame

cams =

]

Driving Requirement

Ability to derive normalized results

* Benchmark results are important to the design of future systems
» Difficult to directly compare performance of varied systems across distinct kernels

Support for a multitude of programming models
» Different workloads and systems utilize a variety of programming models
e Atomics are implemented differently in each model

Allow the opportunity for system and model specific optimizations

Provide pathological kernels that replicate a variety of common memory access
patterns of interest

CircusTent Continued

CircusTent consists of eight constituent kernels

Two implementations of each kernel per back end:
* Atomic add/fetch-and-add (FAA)
e Atomic compare-and-swap (CAS)

Each kernel executes N iterations of a loop for a given
memory access pattern

Each kernel uses two different arrays:
- VAL
* IDX

Number of atomic operations varies between kernels

Benchmark AMOs Per Iteration

Rand
Stride-1
Stride-N

Pointer Chase

Central

Scatter

Gather
Scatter/Gather

W W = = e e

/, 9
CAMS — (PEs x Iters x AMOs_Per_Iter)/le

time

]

circustent Command
Line

Options Handler

Implementation
Template

Shared Memory
Models

Distributed
Memory Models

Rand

Device Offloading
Models

Stride1

Rand

StrideN

Stride1

Rand

PtrChase

StrideN

Stride1

Central

PtrChase

StrideN

Scatter

Central

PtrChase

Gather

Scatter

Central

Scatter/Gather

Gather

Scatter

Scatter/Gather

Gather

Scatter/Gather

Symposium on Memory Systems

Algorithm 1: Random Access Kernel

for i < 0 to iters by 1 do
| AMO(VAL[IDX][i]])
end

Williams, B., Leidel, J., Wang, X., Donofrio, D.,
Chen, Y.: Circustent: A bench- mark suite for
atomic memory operations. In: The International
Symposium on Memory Systems

Algorithm 2: Stride-1 Kernel

for i < 0 to iters by 1 do
| AMO(VALLi))
end

Williams, B., Leidel, J., Wang, X., Donofrio, D.,
Chen, Y.: Circustent: A bench- mark suite for
atomic memory operations. In: The International
Symposium on Memory Systems

Algorithm 3: Stride-N Kernel

for i < 0 to iters by stride do
| AMO(VAL]Ji])
end

Williams, B., Leidel, J., Wang, X., Donofrio, D.,
Chen, Y.: Circustent: A bench- mark suite for
atomic memory operations. In: The International
Symposium on Memory Systems

Algorithm 4: Pointer Chase Kernel

fori < 0 toitersby 1do
| start = AMO(IDX[start])

end

Chen, Y.: Circustent: A bench- mark suite for
atomic memory operations. In: The International
Symposium on Memory Systems

Algorithm 5: Central Kernel

fori <« 0 toitersby 1do
| AMO(VAL[0])
end

Algorithm 6: Scatter Kernel

fori < 0 toitersby1do

dest = AMO(IDX]i+1])

val = AMO(VALJi])

AMO(VAL|dest]|, val) // VAL|[dest] = val
end

Symposium on Memory Systems

Algorithm 7: Gather Kernel

for i < 0 to iters by 1 do
src = AMO(IDX][i+1])
val = AMO(VAL|src])
AMO(VALIi], val) // VALIi] = val
end

Williams, B., Leidel, J., Wang, X., Donofrio, D.,
Chen, Y.: Circustent: : A bench- mark suite for
mmmmmmmmmmm y operations. In: The International
Symposium on Memory Systems

Algorithm 8: Scatter/Gather Kernel

fori < 0 toitersby 1do
src = AMO(IDX[i])
dest = AMO(IDX[i+1])
val = AMO(VAL[src])

AMO(VAL[dest], val) // VAL[dest] = val
end

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -help

CircusTent Version 0.1
Usage: circustent [OPTIONS]

-b|-bench|--bench TEST : Sets the benchmark to run
-m|-memsizel--memsize BYTES : Sets the size of the array
-pl-pes|--pes PES : Sets the number of PEs
-1|-1ters|--1ters ITERATIONS : Sets the number of iterations per PE
-s|-stridel--stride STRIDE (elems) : Sets the stride in 'elems'

-hl-helpl--help : Prints this help menu
-L1-1istl--11st : List benchmarks

mibeebe@®gc64:~/ct/circustent/build/src/CircusTent$

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -list

BENCHMARK | REQUIRED_OPTIONS | DESCRIPTION

RAND_ADD | No Arg Required | Random memory access pattern using FETCH+ADD
RAND_CAS | No Arg Required | Random memory access pattern using CAS

STRIDE1_ADD | No Arg Required | Stride-1 memory access pattern usign FETCH+ADD
STRIDE1_CAS | No Arg Required | Stride-1 memory access pattern usign CAS
STRIDEN_ADD | stride | Stride-N memory access pattern usign FETCH+ADD
STRIDEN_CAS | stride | Stride-N memory access pattern usign CAS

PTRCHASE_ADD | No Arg Required | Pointer chase memory access pattern using FETCH+ADD
PTRCHASE_CAS | No Arg Required | Pointer chase memory access pattern using CAS
CENTRAL_ADD | No Arg Required | Centralized point access using FETCH+ADD
CENTRAL_CAS | No Arg Required | Centralized point access using CAS

SG_ADD | No Arg Required | Scatter/Gather memory access pattern using FETCH+ADD
SG_CAS | No Arg Required | Scatter/Gather memory access pattern using CAS
SCATTER_ADD | No Arg Required | Scatter memory access pattern using FETCH+ADD
SCATTER_CAS | No Arg Required | Scatter memory access pattern using CAS
GATHER_ADD | No Arg Required | Gather memory access pattern using FETCH+ADD
GATHER_CAS | No Arg Required | Gather memory access pattern using CAS

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -b RAND_ADD -m 16488974000 -p 24 -i 10000000
RUNNING WITH NUM_THREADS = 24

Timing (secs) : 3.14958
Giga AMOs/sec (GAMS) : 0.0762006

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$
mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -b RAND_ADD -m 16488974000 -p 24 -i 20000000
RUNNING WITH NUM_THREADS = 24

Timing (secs) 1 6.21284
Giga AMOs/sec (GAMS) : 0.0772594

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$
mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -b RAND_ADD -m 16488974000 -p 24 -i 30000000
RUNNING WITH NUM_THREADS = 24

Timing (secs) : 9.27618
Giga AMOs/sec (GAMS) : 0.0776181

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -b RAND_ADD -m 16488974000 -p 24 -i 40000000
RUNNING WITH NUM_THREADS = 24

Timing (secs) : 12.3172
Giga AMOs/sec (GAMS) : 0.07794

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$
mibeebe@gc64:~/ct/circustent/build/src/CircusTent$./circustent -b RAND_ADD -m 16488974000 -p 24 -i 50000000
RUNNING WITH NUM_THREADS = 24

Timing (secs) : 15.4594
Giga AMOs/sec (GAMS) : 0.0776229

mibeebe@gc64: ~/ct/circustent/build/src/CircusTent$ |

mibeebe@gc64:~/ct/circustent/build/src/CircusTent$ lscpu
Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPUEs)):

On-1ine CPU(s) list:

Thread(s) per core:

Core(s) per socket:

Socket(s):

NUMA node(s):

Vendor ID: enuinelntel
CPU family:

Model :

Model name: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
Stepping: 2

CPU MHz: 1201.406

CPU max MHz: 3200 .0000

CPU min MHz: 1200 .0000
BogoMIPS: 4794 .48
Virtualization: VT-x

L1d cache: 32K

L11 cache: 32K

L2 cache: 256K

L3 cache: 15360K

NUMA node@® CPU(s): 0-11

Future Work

* Implementations based on other PGAS models

* Chapel
* UPC
* Coarray Fortran

* Device-specific models
* CUDA

* Adding support for additional atomic primitives

Conclusion

* HPC is changing

* Adoption of increasingly heterogeneous systems composed of novel device
types

* New Challenges
* Difficulty of measuring the performance of diverse platforms

* CircusTent is a tool for measuring the capabilities of distributed
memory hierarchies within emerging heterogeneous system
architectures

Repository and Contact Info

Code Repository:
e https://github.com/tactcomplabs/circustent

Contact Info:
* Michael Beebe — michael.beebe@ttu.edu
* Brody Williams — brody.williams@ttu.edu
* John D. Leidel — jleidel@tactcomplabs.com
* Yong Chen —yong.chen@ttu.edu

https://github.com/tactcomplabs/circustent
mailto:michael.beebe@ttu.edu
mailto:brody.williams@ttu.edu
mailto:jleidel@tactcomplabs.com
mailto:yong.chen@ttu.edu

References

Williams, B., Leidel, J., Wang, X., Donofrio, D., Chen, Y.: Circustent: A bench- mark suite for atomic memory operations. In:
The International Symposium on Memory Systems. p. 144-157. MEMSYS 2020, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3422575.3422789, https://doi.org/10.1145/3422575.3422789

Wang, X., Leidel, J.D., Williams, B., Ehret, A., Mark, M., Kinsy, M.A., Chen, Y.: xbgas: A global address space extension on
risc-v for high performance computing. In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
pp. 454-463 (2021). https://doi.org/10.1109/IPDPS49936.2021.00054

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Everything You Always Wanted to Know about
Synchronization but Were Afraid to Ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP '13). Association for Computing Machinery, New York, NY, USA, 33-48.
https://doi.org/10.1145/2517349.2522714

Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface Standard Version 3.0. Chapter author for
Collective Communication, Process Topologies, and One Sided Communications.

The GAP Benchmark Suite, Scott Beamer, Krste Asanovié, and David Patterson, arXiv:1508.03619 [cs.DC], 2015.

