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Algorithms Software Hardware

Application variety 
leads to 

algorithm 
diversity

Algorithms are 
implemented with 

different software 
frameworks

Recommendation is 
deployed on 

heterogenous 
hardware

Different layers of the execution stack have different 
bottlenecks!
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Systems Platforms Evaluation

MT-WnD

Great speedup on GPUs

Rely on Fully-Connected 
(FC) stacks

S
p

e
e
d

u
p

RM1

Bad speedup on GPUs

Rely on Embedding 
lookups

Cascade Lake

1080 Ti GPU
T4 GPU

DIN DIEN

Implements Attention Mechanism

DIN bad on GPUs
DIEN good on GPUs

Batch Size

Model architecture and use-case play important roles in determining 
acceleration
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GPUs struggle with models dominated by Embedding operators on 
CPUs

due to data communication overheads
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Core Bound

sub-optimal functional units

Memory Bound

d-cache miss/bandwidth
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On Cascade Lake, FC-dominated models benefit from wider 
SIMD, shifting bottlenecks to memory subsystem
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Summary of Microarchitectural 
Effects

Type of Model Microarchitectural Insight

FC Heavy On Broadwell, insufficient 
functional units

On Cascade Lake, sub-optimal 
memory subsystem

Attention Heavy Frontend Latency
L1 i-cache miss rate (L1 i-MPKI)

Embedding Heavy Frontend Bandwidth
Decoded i-cache (DSB)
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More algorithms More 
characterization Open-Source

More industry-
representative deep 

recommendation models
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detailed PMU counter 
analysis

Model implementations 
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open-sourced:
https://github.com/
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More Features, More Accuracy … And Memory Capacity
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[1] “Training Massive Scale Deep Learning Ads Systems with GPUs and SSDs”, PeRSonAl at ISCA 2020, Weijie Zhao
[2] “Understanding Capacity-Driven Scale-Out Neural Recommendation Inference”, arXiv:2011.02084, Lui et. al.
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Cost Read LatencyWrite Latency
Random 4KB 
Read B/W

O(10ns)

O(10us)

O(10ns)

O(1ms) O(2-3GB/
s)

O(75GB/s)O(5-10X)

O(X)

Random 128B

O(75GB/s)

O(10MB/s)
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3 Orders of magnitude slower 
embedding operations

Low Bandwidth
Page Size vs. Access Size

Software Overheads in PCIe Access

Significant slowdown 
in embedding 

dominated models
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Hit-rates vary wildly across 
embedding tables
from 10% to 90%

Low Bandwidth

DRAM Caching

Page and Access Size 
Mismatch

Table re-ordering, 
advanced caching

Bandana [1]

Software Overheads 
in PCIe Access

Near Data Processing

RecSSD [2]

[1] “Bandana: Using Non-volatile Memory for Storing Deep 
Learning Models”, SysML 19, Eisenman et. al.

[2] “RecSSD: Near Data Processing forSolid State Drive Based 
Recommendation Inference”, ASPLOS 2021, Wilkening et. al.

Smaller flash page sizes 
in SSD hardware, byte 

addressable NVM
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Question: What is Near Data Processing, why does it work, and when does it work? 

Move application specific 
computation closer to the 

data
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Question: What is NDP, why does it work, and when does it work? 

More efficiently leverage internal 
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increased internal bandwidth
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Question: What is NDP, why does it work, and when does it work? 

Requires data intensive, 
computationally light tasks, which 

preferably reduce to simpler results
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General Purpose NDP RecSSD

• Built for a wide array of 
computational tasks

• Typically relies on 
highly customized 
hardware accelerators, 
SSD firmware, host 
drivers, and 
programming 
interfaces

• Built for 
recommendation

• Uses commodity 
hardware

• Built entirely within the 
FTL

• Uses standard NVMe 
interfaces and minimal 
driver modifications

• Minimalist, cost 
efficient, low latency 
design
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RecSSD Performance
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Up to 2x inference latency improvement alongside 
conventional caching techniques
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