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Different layers of the execution stack have different
bottlenecks!
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On Cascade Lake, FC-dominated models benefit from wider
SIMD, shifting bottlenecks to memory subsystem
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Attention-based models suffer from frontend latency
(L1 instruction-cache misses)
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Summary of Microarchitectural
Effects

FC Heavy On Broadwell, insufficient
functional units
On Cascade Lake, sub-optimal
memory subsystem

Attention Heavy Frontend Latency
L1 i-cache miss rate (L1 i-MPKI)
Embedding Heavy Frontend Bandwidth

Decoded i-cache (DSB)
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Cost

O(5-10X)




High-Capacity Flash vs. DRAM

Cost Read Latency

O(5-10X) O(10ns)
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High-Capacity Flash vs. DRAM

Cost Read LatencyWrite Latency

O(5-10X) O(10ns) O(10ns)

E O(X) O(10us) O(1ms)
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High-Capacity Flash vs. DRAM

Random 4KB
Cost Read LatencyWrite Latency Read B/W

O(5-10X) O(10ns) O(10ns) O(75GB/s)

E O(X) O(10us) O(1ms) O(2-3GB/
S)

A A o 0 ’;‘\ o O
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High-Capacity Flash vs. DRAM

| Random 4KB
Cost Read LatencyWrite Latency Read B/W  Random 128B

O(5-10X) O(10ns) O(10ns) O(75GB/s) O(75GB/s)

E O(X) O(10us) O(1Ims) O(2-3GB/ O(10MB/s)
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Flash SSDs for Recommendation
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Flash SSDs for Recommendation

EE DRAM B SsD
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Batchsize
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Flash SSDs for Recommendation

EE DRAM B SsD
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Batchsize

= [ DRAM [ SSD
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Problems with Flash for
Recommendation
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Problems with Flash for
Recommendation

—

.
| oRMceenng

\

G

128KB 512KB 1MB 2MB 4MB 8MB 16MB
Cache Size

[1] “Bandana: Using Non-volatile Memory for Storing Deep
Learning Models”, SysML 19, Eisenman et. al.
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Problems with Flash for
Recommendation

Low Bandwidth

DRAM Caching

Hit Rate
o =
> o

128KB 512KB 1MB 2MB 4MB 8MB 16MB
Cache Size

Hit-rates vary wildly across
embedding tables
from 10% to 90%

Page and Access Size Software Overheads
Mismatch in PCle Access
Table re-ordering, Near Data Processing

advanced caching

Bandana [1] RecSSD [2]

Smaller flash page sizes
in SSD hardware, byte
addressable NVM

[1] “Bandana: Using Non-volatile Memory for Storing Deep
Learning Models”, SysML 19, Eisenman et. al.

[2] “RecSSD: Near Data Processing forSolid State Drive Based
Recommendation Inference”, ASPLOS 2021, Wilkening et. al.



RecSSD: Efficient NDP for
Recommendation

Question: What is NDP, why does it work, and when does it work?
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RecSSD: Efficient NDP for
Recommendation

Question: What is Near Data Processing, why does it work, and when does it work?

Move application specific
computation closer to the
data

DRAM U Flash DIMs

DDR3 Controller @L) -
| Yo Flash Controller \
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PCle NVMe Controller Host

SSD




RecSSD: Efficient NDP for
Recommendation

Question: What is NDP, why does it work, and when does it work?

memory level parallelism, for
increased internal bandwidth

DRAM Flash DIMs > More efficiently leverage internal

DDR3 Controller
| Flash Controller

Microprocessor

PCle NVMe Controller Host
System

SSD




RecSSD: Efficient NDP for
Recommendation

Question: What is NDP, why does it work, and when does it work?

DRAM

/DDRS—Gentrol\ler

Flash DIMs

l

\

\ Microprocessor

Flash Controller

PCle NVMe Controller

SSD

Requires data intensive,
computationally light tasks, which
preferably reduce to simpler results

Host
System



RecSSD: Efficient NDP for

Recommendation

General Purpose NDP

Built for a wide array of
computational tasks

* Typically relies on

highly customized
hardware accelerators,
SSD firmware, host
drivers, and
programming
interfaces

RecSSD

Built for
recommendation

Uses commodity
hardware

Built entirely within the
FTL

Uses standard NVMe
interfaces and minimal
driver modifications

Minimalist, cost
efficient low latencv



RecSSD Design Overview

Compute

PCle NVMe Controller

Flash Controllers
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RecSSD Design Overview
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RecSSD Design Overview

Compute

PCle NVMe Controller

Flash Controllers

Host DRAM

SLS Request
(read)

Result
Buffer

SSD DRAM

Pending SLS Buffer

Embedding Cache

Input Config Status

i

Pending Flash Page Requests

Per Die Low-Level Page Request Queues

Pending Host Page Requests

I o | — | —

Result Scratchpad

Per-Die LRU Page Buffer (Cache)
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RecSSD Design Overview

Compute

PCle NVMe Controller

Host DRAM

Flash Controllers

SLS Request
(write)

Input
Config

SLS Request
(read)
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Buffer

Memory
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Embedding Cache

Input Config Status

i

Pending Flash Page Requests
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RecSSD Design Overview

Compute
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RecSSD Performance

RM1 SSD Cache + Host Partition
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Thanks for listening!

Questions?



RecSSD Design Overview

Compute
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RecSSD Design Overview

Compute
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RecSSD Design Overview

Compute
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RecSSD Design Overview

Compute
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