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Abstract

Despite gaining increasing popularity, secure memory is
known to decrease performance and increase energy
consumption when accessing data from main memory. Prior
work has proposed using metadata caching as a means to
reduce overheads. However, the use of caching has
introduced new complications because the heterogenous
miss costs and reuse distances of security metadata are not
compatible with traditional caching algorithms. This work
investigates an alternative to caching, specifically near data
processing, as a means for reducing secure memory
overheads. This work concludes that the use of near data
processing has the potential to cut the performance
overheads of secure memory in half warranting further
investigation.

1. Introduction

Secure memory architectures are used to protect a user’s
data when they do not have physical control over the
hardware. When user’s do not have control over the
hardware, their data is vulnerable to attacks that snoop data
as it travels across the memory bus or swap out the memory
device entirely.

In secure memory implementations, such as Intel SGX, the
chip is treated as the trusted computing base (TCB) while
everything else is untrusted. As such, secure memory
implementations must add security primitives to protect the
confidentiality and integrity of data stored off chip [1]. Data
confidentiality is provided through the use of counter mode
encryption on blocks of data [7], and data integrity is
verified through a Merkle Tree variant, specifically, a
Bonsai Merkle Tree [8]. These security mechanisms require
7 additional metadata requests per every 1 data request to
main memory (1 counter, 1 data HMAC, and 5 tree nodes)
assuming the max Intel SGX enclave size of 128 MiB [4].
This overhead increases with the amount of memory being
protected.

A common method for reducing secure memory overheads
takes advantage of the fact that caches are within the trusted
computing base to cache security metadata (counters,
HMACs, and tree nodes) on chip to cut down on the
additional metadata computations needed per data request.
Prior work has proposed caching metadata in the LLC, a
dedicated metadata cache, or a combination of the two [9]
[1]. However, the benefits of metadata caching on secure
memory performance and energy overheads are limited by
the fact that the various metadata types have incompatible
miss costs and reuse distances with existing caching
algorithms [1].

This work investigates near data processing as an alternative
to metadata caching to improve the performance of secure
memory architecture. Prior work has proposed near data
processing to improve the performance and reduce the
energy consumption of data structures with poor cache
locality [5]. Since the access patterns of security metadata
are similarly incompatible with caching, there is reason to
believe that applying near data processing to secure memory
computations can provide a similar level of improvement.
While [2] made a case for the use of near data processing in
secure memory architectures, this work is the first to
actually attempt to evaluate such a scheme.
This work provides:
1. A proposed scheme for using near data processing
in the computation of security metadata
2. Estimates of the expected improvements the
proposed scheme can provide to justify pursuing it
further
2. Using NDP to Process Security Metadata

The proposed design is depicted in figure 1. In this design,
all metadata computation begins with an on-chip memory
controller, or metadata controller as it is called in this work.
First, when the metadata controller receives a data request, it
creates all of the corresponding metadata requests and
forwards them to memory. The address space in this scheme
is laid out so that the different types of metadata requests for
a given data request are each routed to a different vault.

For data, data HMACs, and counters, the values will be
returned back to the metadata controller. The metadata
controller will then compute the HMAC using the encrypted
data and its counter, compare this value with the HMAC
read from memory, and, finally, decrypt the data using the
counter. The hash of the counter will also be computed in
the on chip metadata controller.

For tree nodes, each node will be read and hashed in
memory. Then, each node with its hash appended will be
returned to the metadata controller. The metadata controller
will then compare the hash of the counter to the last level
node, the hash of the last level node to its parent node, etc.
This chain will continue all the way to comparing the hash
of the top level node with the root stored on chip, which will
complete the verification of the counter. This
implementation does not take hash comparisons off of the
critical path of a data request. However, this is acceptable
because the real delay in secure memory comes from having
to make several read requests and compute several hashes
sequentially. The overhead of making comparisons is trivial.
This implementation is able to effectively remove all
metadata reads and eliminate all but 2 hash computations
out of the critical path of the data request. The hash of the
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data must be computed in the metadata controller because it
is based off of both the counter and the ciphertext.
Additionally, the hash of the counter must be computed on
chip to avoid a replay attack. If counter hashes were to be
computed in memory, an adversary could roll back the
ciphertext, data HMAC, and counter to a previous instance
of these values. However, they could still have the current
counter’s hash returned. As such, both the counter and the
data will pass verification even though they were rolled
back. By computing the hash of the counter in memory, it
can be guaranteed that the counter verified is the same as the
counter used for decryption.

The scheme proposed is resistant to both replay and
arbitrary rewrite attacks. First, an attacker cannot replay an
old set of metadata and have it verified because they cannot
roll back the root node stored on chip. As such, the
verification process will fail with the final comparison to the
root node. Additionally, an attacker will not be able to send
back an arbitrary data value that can pass verification
because they do not know the secret key to be able to
compute accurate hashes.
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Figure 1: Proposed Design for Secure Memory with NDP

2. Evaluation

2.1. Simulator Configuration

The evaluation was conducted using the full-system
simulator, SMCSim [6], which is a Gem5 [10] based
simulator with added support for NDP architectures. The
configuration used for the simulator can be found in table 1.

System Configuration
CPU 1 in-order processor (ARMvE)
NDP Cores 1 in-order processor per vault (ARMvE)
L1 Cache 32kB instruction cache + 32kB data cache, both 2-way set associative
L2 Cache S12kB, 8-way set associative

Main Memory 16 DRAM vaults, 128MB each

Table 1

2.2 Results

The results of the evaluations can be found in figures 4 and
5. All results were collected by fast forwarding the
benchmark by 1 billion instructions and then simulating for
1 billion more. This work was evaluated using benchmarks
from the SPEC CPU2017 testing suite [11]. Benchmarks
were chosen for their distinct MPKI values, which

represents the last level cache (L2 in this case) misses per
1000 instructions

Figure 2 shows the total simulated seconds required to run
each of the selected benchmarks (mcf, gcc, lbm, and
bwaves) with no security metadata (baseline), with security
metadata processed in parallel (parallel), and with security
metadata processed sequentially (serial). Processing
metadata sequentially adds about a 50% to 120% overhead
to the overall seconds needed to run the benchmark in
comparison to the baseline. This overhead increases as the
MPKI of the benchmark increases. The parallel optimization
cuts the overall time overheads to only about 17% to 40% in
comparison with the baseline.
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Figure 2: Time required for Baseline (non-secure memory), serial (standard secure memory), and
parallel (secure memory with NDP) implementations

Figure 3 specifically shows the increase in DRAM time
because DRAM is where most of the secure memory
overheads are incurred. DRAM time is measured as the
average amount of time a request spends being processed in
DRAM. The overhead of processing metadata sequentially
and in parallel are plotted with respect to a baseline without
secure memory. For each of the benchmarks, processing
security metadata in parallel cuts the average amount of
time it takes to process a request in DRAM in half.
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Figure 3: The DRAM overhead of processing metadata serially rather than in parallel (using NDP)
in comparison to a baseline implementation (non-secure memory). DRAM overhead is computer
using the number of cycles a data request spends being processed in DRAM

3. Conclusion

Initial evaluations show that near data processing has the
potential to improve secure memory overheads by running
metadata computations in parallel. Approximate evaluations
show that NDP has the potential to cut secure memory
metadata performance overheads in half. This is more
significant than the performance gains of prior work which
attempts metadata fetching in parallel [3]. As such, further
investigation of the benefits of near data processing to
secure memory is warranted.
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