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Background
« Deep Neural Networks used in many ML applications
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* DNN Training and Inference computationally heavy
—  AlexNet performs 7e”8 operations for inference per image

* High parallelism capabilities can be used in parallel
platforms to accelerate DNN operations
—  Multi-CPU, GP-GPU, ASIC, FPGA

« Alarge community of research to accelerate inference of
trained networks
—  Quantization, pruning, weight compression 2



Efficient Training

« Deep network training typically (o]
occurs in the cloud, offline, witha /™ : c.
cluster of powerful GPUs A :

* But the recent trend of distributed

training and incremental (online)
learning shows a need for training [ %D%ﬁ —*Q

algorithms suitable for embedded

systems Google Federated Learning
(Source: https://bit.ly/2IHdmzw)




Beyond GPUs

« Training is orders of magnitude more complex than inference
—  Backpropagation with one million Images for AlexNet

 GPU is used for training due to high parallelism and software
« But GPU is power hungry -> Volta architecture up to 300w
« GPU traditionally supports floating point FP32

— New Volta architecture supports FP16, INT8, etc for inference

« ASICs and FPGAs allow custom number representations



« Back propagation needs high dynamic range due to
very small gradients.
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« Deeper neural networks generate smaller gradients
* As the training proceeds, the gradients get smaller

» Full precision is not needed during the whole process
of training
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Experimental Methodology

* Finite Precision simulated on GPU with QuantizedNN
tool, KU Leuven [2]

— Atool written in TensorFlow and Keras with CIFAR-10 dataset

« Quantize the output of operations in each stage

Layer N
A
Layer N + 1

e
( )
FP32

Forward Pass ---

FP32 FP32 FP32
Backward Pass --- Quantize

FP32 FP32




« Two-phase Fixed Point representation, 16 bit fixed in
the first half and 32 bit fixed point in the second half
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Proposed Work

« Optimize where to switch to higher precision to
save power and minimize impact on accuracy
—  Scale precision aggressively and use classification
accuracy as a metric, GaTech 2016 [3]
 Monitor more statistically significant metrics 1
—  Standard deviation of first quantile, max/min, mean of

gradients, etc.
+ Alleviate the accuracy loss by other methods SES

including high accuracy low precision training
(HALP), Stanford 2018 [4]

—  Loss Scaling

— Retain full-precision model for weight update

Loss Scaling [4]
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Potential Benefits

» Relative Power Consumption for Different
Representations in custom hardware (Horowitz 2014)
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Potential Benefits

« Lower Memory Bandwidth for weights and activations
—  Proper design guarantees higher throughput when precision is
low
—  Better usage of available on-chip memory with low precision

* Speed up the training process
—  Better computational resource usage

— e.g. Theoretically, a hybrid MAC unit can perform two 16 bit
operations or one 32 bit operation based on the target
accuracy
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* Need a MAC architecture that supports multiple

precision configurations and can change on the fly

— Lower precision configurations need to be faster than higher precision
ones

« GaTech 2016 [3] created 16/32 bit MAC unit

— Feeds through 16-bit MAC multiple times
— Trades slightly increased power consumption and delay for flexibility

Multiplier Architecture
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« Fixed point is not suitable for deeper networks (e.g.
AlexNet) on larger datasets (e.g. ImageNet)

Larger Datasets

« Block floating point is a possible replacement

—  Extending FlexPoint (Intel 2018 [5]) to shared exponent of 8 bits,
variable length mantissa at different stages of training

« Enough dynamic range to support larger datasets

« Memory capacity and bandwidth can be reduced by
30%
eeeece.mmmmmmmmmmmmmmmm
geeee.mmmmmmmm
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Conclusion and Path Forward

 DNN training implementations have a lot of room for
Improvement

« Custom number representations can replace the full
precision floating point with minimal accuracy loss

« Power consumption, memory bandwidth, and training
speed can be improved by using dynamic precision
number representation

 We are currently working on finding the best metrics
for dynamic scaling methods

 We are also working on an FPGA Implementation for

Dynamic Precision Training 14
e
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Thank You!

Questions?
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