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Background

• Deep Neural Networks used in many ML applications

• DNN Training and Inference computationally heavy 
– AlexNet performs 7e^8 operations for inference per image

• High parallelism capabilities can be used in parallel 

platforms to accelerate DNN operations
– Multi-CPU, GP-GPU, ASIC, FPGA

• A large community of research to accelerate inference of 

trained networks
– Quantization, pruning, weight compression 2



Efficient Training

• Deep network training typically 

occurs in the cloud, offline, with a 

cluster of powerful GPUs

• But the recent trend of distributed 

training and incremental (online) 

learning shows a need for training 

algorithms suitable for embedded 

systems
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Google Federated Learning 

(Source: https://bit.ly/2IHdmzw)



Beyond GPUs

• Training is orders of magnitude more complex than inference
– Backpropagation with one million Images for AlexNet

• GPU is used for training due to high parallelism and software

• But GPU is power hungry -> Volta architecture up to 300w

• GPU traditionally supports floating point FP32
– New Volta architecture supports FP16, INT8, etc for inference

• ASICs and FPGAs allow custom number representations
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Challenges

• Back propagation needs high dynamic range due to

very small gradients.
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Gradient Distribution in a speech recognition neural network, 

Baidu/Nvidia 2017[1]



Idea

• Deeper neural networks generate smaller gradients

• As the training proceeds, the gradients get smaller

• Full precision is not needed during the whole process

of training
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Trend of loss during training with CIFAR-10



Experimental Methodology

• Finite Precision simulated on GPU with QuantizedNN 

tool, KU Leuven [2]
– A tool written in TensorFlow and Keras with CIFAR-10 dataset 

• Quantize the output of operations in each stage
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Experiments

• Two-phase Fixed Point representation, 16 bit fixed in 

the first half and 32 bit fixed point in the second half
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Two-phase training 



Proposed Work

• Optimize where to switch to higher precision to 

save power and minimize impact on accuracy
– Scale precision aggressively and use classification 

accuracy as a metric, GaTech 2016 [3]

• Monitor more statistically significant metrics
– Standard deviation of first quantile, max/min, mean of 

gradients, etc.

• Alleviate the accuracy loss by other methods 

including high accuracy low precision training 

(HALP), Stanford 2018 [4]
– Loss Scaling

– Retain full-precision model for weight update
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Loss Scaling [4]



Potential Benefits

• Relative Power Consumption for Different 

Representations in custom hardware (Horowitz 2014)

10Relative Power Consumption of Different Scenarios



Potential Benefits

• Lower Memory Bandwidth for weights and activations

– Proper design guarantees higher throughput when precision is 

low

– Better usage of available on-chip memory with low precision

• Speed up the training process 

– Better computational resource usage

– e.g. Theoretically, a hybrid MAC unit can perform two 16 bit 

operations or one 32 bit operation based on the target 

accuracy
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Multiplier Architecture

• Need a MAC architecture that supports multiple 

precision configurations and can change on the fly
– Lower precision configurations need to be faster than higher precision 

ones

• GaTech 2016 [3] created 16/32 bit MAC unit
– Feeds through 16-bit MAC multiple times

– Trades slightly increased power consumption and delay for flexibility
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16/32 bit MAC [3]



Larger Datasets

• Fixed point is not suitable for deeper networks (e.g. 

AlexNet) on larger datasets (e.g. ImageNet)

• Block floating point is a possible replacement
– Extending FlexPoint (Intel 2018 [5]) to shared exponent of 8 bits, 

variable length mantissa at different stages of training

• Enough dynamic range to support larger datasets

• Memory capacity and bandwidth can be reduced by 

30%
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Conclusion and Path Forward
• DNN training implementations have a lot of room for

improvement

• Custom number representations can replace the full

precision floating point with minimal accuracy loss

• Power consumption, memory bandwidth, and training

speed can be improved by using dynamic precision

number representation

• We are currently working on finding the best metrics

for dynamic scaling methods

• We are also working on an FPGA Implementation for
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Thank You!

Questions?
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