
Cryptographically Attested Secure Hardware
Ilia Lebedev, Christian Wentz

CSAIL@MIT and gradient.tech

https://gradient.tech

Hi!
My name is Ilia, let’s small talk:

what are some of your hopes and dreams?

I dream we stop using the word “secure”
without context (secure against ___)

If computing remotely,
what is the TCB?

CPU HW

Hypervisor

Process

OS

3

Today, privilege implies trust (1/3)

trusted
computing base

Process Process

OS

VM boundaryProcess boundary

pr
iv

ile
ge

CPU HW

Hypervisor

Process

OS

Process

150
KLOC

12,000
KLOC

??? LOC

Process

OS

4VM boundary

Today, privilege implies trust (2/3)

Process boundary

trusted
computing base

pr
iv

ile
ge

If computing remotely,
what is the TCB?

Without formal guarantees,
large TCBs are buggy,
vulnerable, and not
trustworthy

Leaks via “side channels”

 (shared resources)

Process abstraction is
insufficient.

Separate mutually
distrusting entities into
isolated protection domains

CPU HW

Hypervisor

Process

OS

Process Process

OS

Today, privilege implies trust (3/3)

5

pr
iv

ile
ge

VM boundaryProcess boundary

Chapter 1: Remotely Attested Execution

Remote Software Attestation (1 /2)

7

Trusted HW

Software
Ecosystem

App

Remote
user

Measures (hash)
and Signs

Key Agreement

Trusted HW creates proof for remote user

8

Root of Trust

Software
Ecosystem

App

Trusted
First Party

Key Agreement

Private data

Private result

Remote user decides whether or not to trust certificate

Remote Software Attestation (2 /2)

Measures (hash)
and Signs

Hardware-Assisted Attestation: TPM+TXT

9

Tamper-resistant
HW

BIOS,
OS,

Device drivers and all

App

12,000+
KLOC

Trusted
First Party

Key Agreement

Private data

Private result

Trusted HW must
keep its keys private!

Software ecosystem
must not be vulnerable

Prior work included too much
SW in their attestation

Trusted
Platform
Module

TXT Measures (hash)
and Signs

Set associative caches share and leak (1/3)

10

7A9 02 4
address tag set index line offset

Set 0, Way 0 Set 0, Way 1 Set 0, Way W-1...
Set 1, Way 0 Set 1, Way 1 Set 1, Way W-1
Set 2, Way 0 Set 2, Way 1 Set 2, Way W-1

Set 2, Way 0 Set 2, Way 1 Set 2, Way W-1...
...

Accessing address
0x7A9024

(tag, line data) (tag, line data) (tag, line data)

Set associative cache

If any tag is 7A9, this is a cache hit, and line data
is returned / modified.

Else this is a miss, and causes a fill → eviction

Many addresses share
cache sets,

conflict via evictions.

Set associative caches share and leak (2/3)

11

Page tables also leak (2/2)

Encrypted image compared to public images inside enclave
12

13

MIT Sanctum Architecture
Manufacturer

Sanctum HW

Security Monitor
(SM)

OS

Process

Strongly Isolated Software
Container (Enclave)

Secure Processor

An enclave is a process* that has these properties:
Measurement, Integrity, Confidentiality

* Enclaves assumed not to leak their own private state!

Enclave

Key Agreement over
ye old internet

Trusted
First Party

Chapter 2: Enclaves via a
Security Monitor

Defining properties of an Enclave (1/3)
measurement

15

(☞ﾟヮﾟ)☞

Oh hi! I am authenticated,
and you know what to

expect from me

InitializeHavoc state (*)

Apply action 𝞹 to
both enclaves

Enclave A

Enclave B
Invariant check

Create arbitrary enclaves A, B
Such that their measurements are equal

enclaves exhibit the same
observable behavior

Same measurement → same behavior

Defining properties of an Enclave (2/3)

16

No untrusted software
can influence my

observable behavior*

* … up to a well-defined threat model

(☞ﾟヮﾟ)☞

(☞ﾟヮﾟ)☞

InitializeHavoc state (*)

Apply action
𝞹 to both

t / nop

Create arbitrary
enclave A

o
Enclave
action

o
Enclave
action

Copy proof state. Attacker
is active in one,
but not the other. (nop)

Invariant:
Identical observable
behavior

Tamper
function t

Exit

Observation
function o

Both traces
join at the end
when
enclaves exit.

Threat model := {Platform API, o, t}

integrity

Defining properties of an Enclave (3/3)

17

(☞ﾟヮﾟ)☞

The observable side
effects of my

computation are
independent of my

private state

(☞ﾟヮﾟ)☞

Initialize
Havoc

state (*)

Apply actions 𝞹, o to both

action
𝞹

action
𝞹

Copy proof state.
Same actions applied
to different enclaves. Change (*)

enclave
state

Attacker
observation o

Attacker
observation o

Observation function o

Exit

Invariant: attacker sees
the same observation

Threat model := {Platform API, o}

confidentiality Create arbitrary
enclave A

18

Threat Model

anonymous
remote users

ヽ(• ́o• ̀)ノ Authenticated
remote users

Small
“security monitor”

firmware

user-provided
software (OS, apps.

scripts in a web page)

Users with
physical access

Root of trust
software

Hardware

(no protection
offered by Sanctum

)

Entities attempting
denial of service

No guarantees
possible

enclaved software
binary

first party

(arbitrary software
is compromised)

(enclaves are
correct)

Hardware security is hard

enclave
semantics Physical

Memory

State
Registers

Control
Registers

Load/Store virtual addr.
Change priv. Modes
Edit page tables
Flush TLB
System calls
I/O operations
Inter-processor Interrupts
ALU ops
 etcetera

We define what
“security” means
here (at best,
usually at even
higher levels)

But the
machine
enforces
invariants
here

Use formal verification to prove equivalence!

Security policy is
stated in terms of
high-level semantics

Hardware can only
enforce low-level
invariants

… implemented byPlatform/ABI semantics… implemented by

19

Chapter 3: Strong Microarch. Isolation
of Protection Domains

“RISC architecture is
gonna change everything”

Protection
domain 2

Sharing resources in a simple processor system

21

LLC

Private Cache

Core 0

DRAM

In-order datapath

$

C
or

e
1

$ $

C
or

e
2

C
or

e
3

I/O

Protection
domain 1 μarch

state

Attack Schema (1/2)

Attacker

Domain of Victim

Secret

Channel

Transmitte

r

Secret

Receiver

1. Create a channel
2. Create the transmitter
3. Launch the transmitter
4. Access the secret

22

Access

Usually shared
cache tag state

Attack Schema (2/2)

Attacker

Domain of Victim

Channel

Transmitte

r

Secret

Receiver

-Pre-existing (classic RSA mod-exp cache leak)
- Written by attacker (Meltdown)
- Assembled from victim code by attacker (Spectre)

23

Secret

Access

Defense Schema

Attacker

Domain of Victim

Transmitte

r

Secret

Receiver

Block any of
these steps!

...for all
practical*
channels

24

Secret

Access

If cannot prevent infiltration,

Protection
domain 2

Sharing resources in a simple processor system

25

LLC

Private Cache

Core 0

DRAM

In-order datapath

$

C
or

e
1

$ $

C
or

e
2

C
or

e
3

I/O

Protection
domain 1

μarch
state

Punt on this for now

Isolate in space by partitioning

Isolate in time
by flushing

Isolating in the LLC (2/8)

26

Set Index Line OffsetPhysical Address Tag
6

LLC sharing leaks
privacy!

==

1115

====

64 bytes

LLC OS starves
enclave at LLC!

Availability of
this set leaks
privacy

Isolating in the LLC (2/8)

27

Set Index Line OffsetPhysical Address Tag
6

LLC sharing leaks
privacy!

==

1115

====

64 bytes

LLC
Give private
LLC sets to
enclaves!

Isolating in the LLC (4/8)

28

Physical Page Number

Page Offset

Page Offset

Virtual Address

Physical Address

Page tables
OS controls

4KB

1220

52 or fewer

Virtual Page Number

Virtual address translation

(TLB caches translations)

Isolating in the LLC (5/8)

29

Physical Page Number

Page Offset

Page Offset

Virtual Address

Physical Address

Page tables
OS controls

4KB

1220

52 or fewer

Virtual Page Number

PTBR A toy 2-level page table

VPN[11:0]

PTW performs
translation

(TLB caches translations)

VPN[23:12]

Physical page

Virtual address translation

+

Isolating in the LLC (6/8)
Physical Page Number Page Offset

12

 Set Index Line OffsetTag
61115

“DRAM Region Index”

Address
translation

LLC

12-6=5
bits of “color”!

30

To isolate enclaves in LLC, allocate
exclusively, at region granularity!

Isolating in the LLC (7/8)
Physical Page Number Page Offset

12

 Set Index Line OffsetTag
61115

“DRAM Region Index”

DRAM

Each region is 1

 4K page in size

Address
translation

LLC

12-6=5
bits!

Toy example: 3 DRAM region bits

31

32KB
Small problem : A DMA buffer

To isolate enclaves in LLC, allocate
exclusively, at region granularity!

...

Isolating in the LLC (8/8)

32

Physical Page Number Page Offset

12

 Set Index Line OffsetTag
61115

“DRAM Region Index”

DRAM

Each region is
contiguous, 32KB

Rotate PPN to make colors
contiguous in DRAM

32KB

Now top PA bits determine DRAM region
...

Toy example: 3 DRAM region bits

33

Page Table
Walker

Cache & DRAM

Valid bit Page
table
entry

Re
qu

es
t

Response
Address

&
Response
valid bit

TLBHardware-assisted
Isolation

Maintain an invariant:
TLB entries are safe!

HW enforces invariants

at page walks

Invariant
checker

SW updates invariants and
causes TLB shootdowns

SM sanitizes mode switch

34

Page Table
Walker

Cache & DRAM

PRBASE

==

Valid bit Page
table
entry

Re
qu

es
t

&
Response
valid bit

&PRMASK

TLBProtect SM memory
from everyone

OS could rewrite S.M. code, do evil

fix by...

Never map VAddr to SM memory

Response
Address

Isolating Enclaves
in Physical Memory

35

Page Table
Walker

Cache & DRAM

DRBMAP

&

Region
index to
One Hot

Valid bit

Re
qu

es
t

Response
Address

&
Response
valid bit

Page
table
entry

TLB

...other
invariantsOS could read/write Enclave memory

fix by...

Enforce DRAM Region
permissions to at page walk

S.M. updates permissions
when scheduling enclaves

Isolating enclave page tables

36

EVMASK &
VAddr

EVBASE ==

Should this VA use enclave’s tables?

PTBR

DRBMAP

PARBASE

PARMASK

EPTBR EPARBASE

EDRBMAP EPARMASK

OS could spy on enclave’s
page table entries

fix by...

Implement enclave-private
page tables

this slide is intentionally left blank

Remote attestation of enclaves (1/5)

38

SM on trusted
Sanctum
hardware

Trusted first
party

Private
code/data

Public
code

First party knows and
trusts PK

M
, the trusted

manufacturer’s public
key

(network or local if enclaves)

Send public
code, request

an enclave.
Create a new

enclave according
to the client’s

request

Public
code

(new,
untrusted
enclave)

Public
code

Untrusted OS,
hypervisor, etc.

SM creates an
attestation and
certificate chain
SignSM(HEnclave,
nonce),PKSM, PKDEV,
PKM, HSM, signatures

Remote attestation of enclaves (2/5)

39

SM on trusted
Sanctum
hardware

Trusted first
party

Private
code/data

(network or local if enclaves)

Request an
attestation, and send

a nonce, Diffie
Hellman handshake

Enclave sends
nonce for

attestation

Public
code

Enclave receives its
attestation

Cryptographic
measurement of

the enclave

SM reads the sender
enclave’s measurement (H)

First party knows and
trusts PK

M
, the trusted

manufacturer’s public
key

Untrusted OS,
hypervisor, etc.

(untrusted enclave)

Remote attestation of enclaves (3/5)

40

SM on trusted
Sanctum
hardware

Trusted first
party

Private
code/data

First party checks the certificate and trusts PK
M

,
and therefore also trusts Sign

M
(PK

DEV
),

and therefore also trusts SignDEV(PKSM, H
SM

), and
therefore considers H

SM
 authentic.

(network or local if enclaves)

The first party and the enclave
now have a private channel
(via encryption after Diffie

Hellman key exchange)

Public
code

Sends Diffie hellman
handshake and

Untrusted OS,
hypervisor, etc.

(untrusted enclave)

Remote attestation of enclaves (4/5)

41

SM on trusted
Sanctum
hardware

Trusted first
party

Private
code/data

Public
code

(network or local if enclaves)

Public
code

If the first party trusts H
SM

, then it also trusts
SignSM(HEnclave, nonce) if the nonce matches,
and therefore considers H

Enclave
 authentic.

(untrusted enclave)

Untrusted OS,
hypervisor, etc.

If H
Enclave

 matches the expected value,
then the first party can trust the enclave.

Remote attestation of enclaves (5/5)

42

SM on trusted
Sanctum
hardware

Trusted first
party

Private
code/data

Public
code

(network or local if enclaves)

Public
code

The first party sends (via the encrypted
channel) private code/data to the
trusted enclave.

The enclave’s initial state and isolation
are authenticated (and trusted).

The enclaved application must not have
leaks or vulnerabilities;

(trusted enclave)

Untrusted OS,
hypervisor, etc.

Private
code/data

The enclave performs its computation (which may
communicate with the OS or other parties, use other
data, send results to the first party, etc.).

The SM guarantees it remains isolated.

Generate random B, compute gB

M = {gA, gB, metadata, },

signed with with *.

43

Manufacturer

Sanctum HW

Security Monitor
(SM)

Sanctum
computerRemote

user

Detail: attestation in Sanctum

Select primes p, g.

Generate random A

Compute (gA mod p)

p, g,
(gA mod p)

M

Both parties now

share a secret key: K

Does remote user trust

metadata, , ?

Compute symmetric key
K = (gB)A mod p Compute symmetric key

K = (gA)B mod p

Private key
corresponding to

a well-known
public key

enclave

Diffie Hellman to establish a private
channel with remote enclave
(discrete log crypto, or elliptic curve
where {gA, gB} → GAB is hard.) Send

Send

