
Department of Electrical & Computer Engineering

CodeTrolley: Hardware-Assisted
Control Flow Obfuscation

Novak Boškov, Mihailo Isakov, Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Lab

Boston University

Department of Electrical & Computer Engineering

In Media

Department of Electrical & Computer Engineering

In Research

“It is easy to reverse engineer software today. An attacker generally
requires no more than a basic debugger, a compiler and about a

day's effort to de-obfuscate code that has been obfuscated with the
best current methods. The reason for the relative ease is that
program obfuscation is primarily based on "security through

obscurity" strategies, typified by inserting passive junk code into a
program’s source code.”

Department of Electrical & Computer Engineering

Bad Obfuscation

sqrt(x) != -1 always True

Department of Electrical & Computer Engineering

Bad Obfuscation

x2 != -1 always True

Department of Electrical & Computer Engineering

An Attack on CF Obfuscation

Department of Electrical & Computer Engineering

Better Predicate
Symbolic memory opaque predicate

int foo(int symvar) {

 int j = symvar;

 int a1[] = {1, 2, 3};

 int a2[] = {j, 1, 2, 3};

 int i = a2[a1[j%3]];

 if (i == j)

 JunkCode();

 if (i == 1 && j == 3)

 GuardedCode();

}

Unsatisfiable
for all j

Satisfiable

Department of Electrical & Computer Engineering

Attack on CF Obfuscation
Symbolic memory
Covert symbolic propagation
Floating-point accuracy
Parallel programming

Improved Concolic
Execution

Department of Electrical & Computer Engineering

CodeTrolley’s method
Obfuscate predicates using a secret key

Department of Electrical & Computer Engineering

Obfuscator

Department of Electrical & Computer Engineering

Obfuscator

Department of Electrical & Computer Engineering

Obfuscator

Department of Electrical & Computer Engineering

Obfuscator Algorithm

▪ In compile time: all conditional branches are
potentially reversed

▪ call hash function
‣ hash(branch_address, key) is cryptographic hash

function that returns a single bit
▪ if 1 is returned reverse the branch

▪ The same hash function is called in runtime
to de-obfuscate the program

Department of Electrical & Computer Engineering

int main() {

 int n;

 printf("Enter a number: ");

 scanf("%d", &n);

 if (n < 5)

 printf("Your number is lower than 5\n");

 if (n > 12)

 printf("Higher than 12\n");

 return 0;

}

Example

Conditional branches hash(0, key) = 1
hash(1, key) = 1

Department of Electrical & Computer Engineering

main: # @main

 ...

 addi a1, zero, 4

 blt a1, a0, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 13

 blt a0, a1, .LBB0_4

 j .LBB0_3

Example
main: # @main

 ...

 addi a1, zero, 5

 blt a0, a1, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 12

 blt a1, a0, .LBB0_4

 j .LBB0_3

ORIGINAL OBFUSCATED

Department of Electrical & Computer Engineering

main: # @main

 ...

 addi a1, zero, 4

 blt a1, a0, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 13

 blt a0, a1, .LBB0_4

 j .LBB0_3

Example
main: # @main

 ...

 addi a1, zero, 5

 blt a0, a1, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 12

 blt a1, a0, .LBB0_4

 j .LBB0_3

hash(0, key) = 1

!(4 < a0) == a0 < 5

.LBB0_2 ➫ do not print

Department of Electrical & Computer Engineering

main: # @main

 ...

 addi a1, zero, 4

 blt a1, a0, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 13

 blt a0, a1, .LBB0_4

 j .LBB0_3

Example
main: # @main

 ...

 addi a1, zero, 5

 blt a0, a1, .LBB0_2

 j .LBB0_1

.LBB0_1: # %if.then

 lui a0, %hi(.L.str.2)

 addi a0, a0, %lo(.L.str.2)

 call printf

 j .LBB0_2

.LBB0_2: # %if.end

 lw a0, -16(s0)

 addi a1, zero, 12

 blt a1, a0, .LBB0_4

 j .LBB0_3

hash(0, key) = 1

hash(1, key) = 1

!(4 < a0) == a0 < 5

!(a0 < 13) == 12 < a0

.LBB0_2 ➫ do not print

.LBB0_4 ➫ do not print

Department of Electrical & Computer Engineering

BRISC-V Baseline

Department of Electrical & Computer Engineering

Stalled-hash design

Department of Electrical & Computer Engineering

Mask-based design

Department of Electrical & Computer Engineering

Cached-hash design

Department of Electrical & Computer Engineering

▪ 6 different PARSEC tasks
▪ Baseline and Mask-based design have a similar

performance
▪ For Stalled-hash and Cached-hash:

‣ 8-cycle hash function
‣ 16-cycle hash function

▪ Cache-hash uses a 256-line (single branch per
line) direct-mapped cache

Performance Evaluation

Department of Electrical & Computer Engineering

Performance Evaluation

Department of Electrical & Computer Engineering

Thank you

