Securing the Processor-to-Processor and Processor-to-Memory Communication Links

George Angelopoulos, C. Barner, R. Kessler

(georgiosa@marvell.com)

BARC 2019

Security Challenges

Security Challenges

Motivation

- New computing paradigms
 - Cloud and IaaS computing
- New technologies
 - Non-volatile memories
- New attacks
 - Foreshadow, Rowhammer variants
- Security primitives can be area, performance and power hungry

Security Objectives

- Confidentiality
 - Prevents eavesdropping
- Authentication
 - Active attacks to tamper data
- Replay attacks
 - Capture now, inject later
- Ciphers, hashes and anti-replay mechanisms are employed to secure our platforms

Advanced Encryption Standard

- AES: 'Golden standard' for ~2 decades
- AES-256 is quantum-resistant
- Widespread support

Advanced Encryption Standard

- AES: 'Golden standard' for ~2 decades
- AES-256 is quantum-resistant
- Widespread support
- Sbox'es consume large area
- Key expansion
- Secure, but not designed with modern computing requirements in mind

Lightweight Crypto

- New crypto primitives
- 'Friendlier' to SW/HW implementations
- No compromises on security
- IoT is main driver in this space
- Plethora of ciphers
 - SIMON, PRESENCE, PRINCE, ...
 - Trivium, Grain, ChaCha, ...
- Same applies for authentication algos

PRINCE cipher

- 64-bit block, 128-bit key
- 11 rounds (5 forward, 1 middle, 5 reverse)
- Low latency and low area

[1] Borghoff et al, "PRINCE – A low-latency block cipher for pervasive computing applications", 2012

PRINCE cipher

- Almost-instantaneous key expansion
 - 128 → 196bits $(k_0||k_1) \rightarrow (k_0||k'_0||k_1)$

$$k'_0 = (k_0 >>> 1) \oplus (k_0 >> 63)$$

- Low latency
 - Few rounds, each round with short logic-depth
- Low area
 - 4-bit Sbox
 - $-\alpha$ -reflection property

$$D_{(k_0||k_0'||k_1)}(\cdot) = E_{(k_0'||k_0||k_1 \oplus \alpha)}(\cdot)$$

PRINCE cipher

Cipher	Area (kGE)	Latency (cycles)	Normalized Power
AES	78	20	23
PRINCE	4.5	5	1

- Fully pipelined design, 2.6GHz, 14nm
- Almost free expansion
- Very low latency for ECB mode
- No RAMs required to store expanded keys
- Significantly lower power than AES

[2] Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC, 2012

Encryption is not enough!

- Encryption is not enough!
- Hash function for MAC-tag generation
- Galois counter mode (GCM)
 - Encryption with CTR/authentication with GHASH
 - Since ~2016, GCM performance is equal to ECB in some modern CPUs
- 64-bit and 128-bit tags
- AES-GCM well understood and used, eg MEE

[3] Gueron, "A memory encryption engine suitable for general purpose processors", ePrint, 2016

- GF(2¹²⁸) multiplication
 - No overflows, wide-expansion
- Recursive Karatsuba algorithm
 - Sub-quadratic complexity

Cipher	Area (kGE)	Latency (cycles)	Normalized Power
AES	78	20	23
PRINCE	4.5	5	1
GHASH	1.6	2	0.4

Anti-replay Protection

Counter mode (CTR)

Anti-replay Protection

Counter mode (CTR)

- Reusing the same IV can be catastrophic
- Lost confidentiality of few msgs, integrity for whole session
- Should use temporal and special info in IV

Anti-replay Protection

- Maintaining counters is not trivial!
- Leverage information from multi-socket CPU protocols
- CCPI (Cavium Coherent Processor Interconnect)
- Sequence number for in order reception
- Retransmission buffers
- Joint operation increases complexity but saves a lot of area

Conclusions

- Integrity, authentication and replay are of equal importance
- Promising new crypto primitives
- PRINCE is an ideal cipher candidate
- Synthesized at 14nm, 2.6 GHz
- Unnoticeable area and power increase
- Negligible latency overhead

Questions?