
Can We Reliably Detect Malware Using Hardware Performance
Counters?

Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, Ajay Joshi
Eletrical and Computer Engineering Department, Boston University

(bobzhou, anmol.gupta1005, rasoulj, megele, joshi)@bu.edu

ABSTRACT
The ever-increasing prevalence of malware has led to the explo-
rations of various detection mechanisms. Several recent works pro-
pose to use Hardware Performance Counters (HPCs) traces with
machine learning classificationmodels for malware detection. HPCs
are hardware units that record low-level micro-architectural events,
such as cache hits/misses, branch (mis)prediction, and load/store
operations. However, information about these events does not cap-
ture the semantic behaviors of the application. In our paper[16], we
claim and experimentally justify that using the micro-architectural
level information obtained from HPCs cannot distinguish between
benignware and malware. We harvest the HPC traces from 1,924
programs, 962 benignware, and 962 malware, on our experimen-
tal setups. We achieve an F1-score (a metric of detection rates)
of 83.39%, 84.84%, 83.59%, 75.01%, 78.75%, and 14.32% for Deci-
sion Tree (DT), Random Forest (RF), K Nearest Neighbors (KNN),
Adaboost, Neural Net (NN), and Naive Bayes, respectively. We cross-
validate our models 1,000 times and the F1-score of models in DT,
RF, KNN, Adaboost, NN, and Naive Bayes is 80.22%, 81.29%, 80.22%,
70.32%, 35.66%, and 9.903%, respectively. To show how fragile the
HPC malware detection system is, we show that one benignware
(Notepad++) infused with malware (ransomware) cannot be de-
tected by HPC-based malware detection.

1 BACKGROUND AND MOTIVATION
Detecting malware is an ongoing challenge for security researchers.
Over the past several years, security researchers have developed
many malware detection techniques, such as signature-based mal-
ware analysis and behavior analysis. These software techniques
extract semantic information from the program to detect malware.
However, software techniques inherently introduce overheads in
the process.

To overcome this degradation in program performance, many
researchers have proposed to use Hardware Performance Counters
(HPCs) to capture micro-architecture events and apply machine
learning (ML) algorithms to classify the programs as malware or be-
nignware [3, 5–7, 11, 14, 15]. Prior HPC malware detections follow
a general pattern: they performed fixed-frequency HPC measure-
ments on a pool of existing malware and benignware, aggregated
the measured HPC traces in a time series, extracted features. Then
previous works apply the extracted features in various ML algo-
rithms to generate classification models. At runtime, the detection
systems measured HPC traces and applied the pre-trained models
to classify the monitored program as malware or benignware.

The approach of malware detection using HPCs relies on the
assumption that the maliciousness of the program affects the mea-
sured HPC traces. However, this assumption is counter-intuitive.

For example, consider a password manager program and a ran-
somware program. Both programs use cryptographic APIs and
upload the keys to the remote server. The program logic of the
password manager and the ransomware are the same. The only dif-
ference is the location of the remote server. One cannot distinguish
between the two locations based on the traces of HPCs because
there is no micro-architecture event that distinguishes the two
servers based on their IP addresses.

Moreover, it is expected from previous works to provide rigorous
analysis to justify how and why to choose these micro-architectural
events for malware detection. However, all previous works elide
this discussion and commit the logical fallacy of “cum hoc ergo
propter hoc” – concluding causation from correlation. The results
in the previous work are based on limited program samples and
experiments that put the detection system at an advantage.

In our paper[16], we evaluate the proposed idea of detecting
malware with HPCs using a realistic setup and performing a com-
prehensive and rigorous analysis. Our analyses show that the ex-
periments conducted in previous works are based on unrealistic
assumptions and insufficient analyses. We classify the drawbacks
of the prior works into the following categories:

1) Using Dynamic Binary Instrumentation tools (DBI) to
gather HPC traces - Hardware vendors usually provide software
APIs to sampleHPC values. DBI tools such as Intel’s Pin [9], QEMU [2],
Valgrind [10], and DynamoRIO [1], can monitor micro-architectural
events in a processor. Khasawneh et al. use these tools in their ex-
periments to extract the HPC traces and detect malware [6, 7, 11].
However, DBI tools introduce as much as 10× performance over-
head during the program execution, which is prohibitive in online
malware detection.

2) Performing the experiments onVirtualMachines (VMs)
- Besides DBI tools, some works use VMs for sampling HPC values
in the experiments [3, 6, 7, 11, 13]. VMs leverage virtualized HPC
technology to extract the HPC values from the host machine. Reli-
ably virtualizing HPCs is a challenge [12] and it is nearly impossible
to measure the HPCs accurately from VMs. There exists malware
that detects VM environment to evade detection [8]. Hence, experi-
ments on VMs cannot conclusively say that HPCs can be used to
detect malware.

3) Divisions of the training-testing dataset based on HPC
traces - Our literature survey revealed that prior works divide the
training and testing datasets based on the measured HPC traces
(Training-testing Approach 1, TTA1) [3, 5, 13, 15], instead of di-
vision based on program samples (Training-testing Approach 2,
TTA2). In TTA1, traces measured from the same program sam-
ple exist in both training and testing dataset. TTA1 represents a
scenario where we can train the ML model using all the binaries
that a user will ever encounter. This is highly unrealistic in real life



Pr
ecRec F1

AUC

20

40

60

80

100

Pe
rc

en
ta

ge
[%

]

Decision
Tree

Pr
ecRec F1

AUC

Naive
Bayes

Pr
ecRec F1

AUC

Neural
Net

Pr
ecRec F1

AUC

AdaBoost

Pr
ecRec F1

AUC

Random
Forest

Pr
ecRec F1

AUC

Nearest
Neighbors

Pr
ecRec F1

AUC

20

40

60

80

100

Pe
rc

en
ta

ge
[%

]

Decision
Tree

Pr
ecRec F1

AUC

Naive
Bayes

Pr
ecRec F1

AUC

Neural
Net

Pr
ecRec F1

AUC

AdaBoost

Pr
ecRec F1

AUC

Random
Forest

Pr
ecRec F1

AUC

Nearest
Neighbors

Figure 1: Box plots of distributions of 10-fold cross-validation experiments using (a) TTA1 and (b) TTA2.

because polymorphic malware can generate an infinite number of
forms with the same original binary.

4)No cross-validation or insufficient cross-validation -When
developing anMLmodel, it is recommended that one trains and tests
the ML model multiple times by partitioning the available data set
differently every time. This cross-validation approach prevents the
ML model from overfitting1. It is recommended by the ML commu-
nity to use 10-fold cross-validation to evaluate a given classifier [4].
Some of the previous works have no cross-validation [3, 14, 15],
while others have insufficient cross-validation [6, 7, 11, 13] of the
trained models. In our experiments, the overall detection rates using
TTA2 have much higher variations compared ones using TTA1 in
Figure 1.

5) Program counts used for training and testing are unre-
alistic - Previous works have performed their evaluation using a
dozen program samples [3, 5, 13–15]. With two decimal precision
and ten cross-validations in the reported results, the experiment
requires at least 1,000 program samples. In order to be accurate with
the reported precision, the results should have either less decimal
precision or more program samples.

2 KEY CONTRIBUTIONS OF THE PAPER
To rigorously evaluate the proposed idea of detecting malware
using HPCs, we performed our experiments with 1,924 program
samples on a cluster of 16 bare-metal AMD machines. Identical
to prior work in this area, after gathering the HPC traces, we ag-
gregated the measured values in the traces into 32 bins, and then
performed Principal Component Analysis (PCA) to reduce the data
dimensions for training, and testing. Unlike prior work, we applied
10-fold cross-validation. In our experiments, we observed a False
Discovery Rate2 of more than 20%. This would mean that in a de-
fault Windows 7 installation with 1,323 executable files, 264 files
would get incorrectly classified as malware.

To show how fragile the HPC malware detection is, we built a
simplemalware that is composed of a benign program (Notepad++)
with malicious functionality (ransomware). While a classifier accu-
rately distinguished the benign and malicious programs in isolation,
the combination of two source-code bases resulted in a malicious
version of Notepad++ that the classifier incorrectly labeled as be-
nignware (i.e., a false negative).

1ML model fits closely to one dataset but fails in the others.
2F+/(F+ +T+), where F+ is the number of benignware classified as malware and T+
is the number of malware classified as malware

In summary, our paper[16] makes the following contributions:
• We identify the prevalent unrealistic assumptions and insuf-
ficient analyses used in prior works that leverage HPCs for
malware detection.

• We perform a rigorous experimental evaluation with a pro-
gram count that exceeds previous works [3, 5, 13–15] by
a factor of 2× ∼ 3×, and the number of experiments in
cross-validations that is three orders of magnitude more
than previous works.

• We train and test dataset using two training-testing dataset
division approaches – division based on measured HPC
traces (TTA1) and division based on program samples (TTA2).
We compare the quality of the ML models for these two
choices and demonstrate that ML models based on realistic
user setting, i.e. TTA2, can lead to a FDR of 20%.

• Finally, in the spirit of open science, we make all our code,
data, and result publicly available under an open-source li-
cense: https://github.com/bu-icsg/Hardware_Performance_
Counters_Can_Detect_Malware_Myth_or_Fact

REFERENCES
[1] 2017. DynamoRIO. http://www.dynamorio.org/. (2017). (Accessed on 12/02/2017).
[2] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In ATC.
[3] John Demme et al. 2013. On the feasibility of online malware detection with

performance counters. In ISCA. 559.
[4] Ian Goodfellow et al. 2016. Deep learning. MIT press.
[5] Mikhail Kazdagli et al. 2016. Quantifying and improving the efficiency of

hardware-based mobile malware detectors. In MICRO. 1–13.
[6] Khaled N Khasawneh et al. 2015. Ensemble learning for low-level hardware-

supported malware detection. In RAID.
[7] Khaled N Khasawneh et al. 2017. RHMD: evasion-resilient hardware malware

detectors. In MICRO. 315–327.
[8] Dhilung Kirat et al. 2014. BareCloud: Bare-metal Analysis-based Evasive Malware

Detection. In SP.
[9] Chi-Keung Luk et al. 2005. Pin: building customized program analysis tools with

dynamic instrumentation. In SIGPLAN. ACM.
[10] Nicholas Nethercote et al. 2007. Valgrind: a framework for heavyweight dynamic

binary instrumentation. In SIGPLAN.
[11] Meltem Ozsoy et al. 2015. Malware-aware processors: A framework for efficient

online malware detection. In HPCA. 651–661.
[12] Benjamin Serebrin et al. 2011. Virtualizing performance counters. In ECPP.
[13] Baljit Singh et al. 2017. On the detection of kernel-level rootkits using hardware

performance counters. In AsiaCCS. ACM, 483–493.
[14] Adrian Tang et al. 2014. Unsupervised anomaly-based malware detection using

hardware features. In RAID. 109–129.
[15] Xueyang Wang et al. 2016. Hardware Performance Counter-Based Malware

Identification and Detection with Adaptive Compressive Sensing. TACO (2016).
[16] Boyou Zhou et al. 2018. Hardware Performance Counters Can Detect Malware:

Myth or Fact?. In AsiaCCS.

2

https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
http://www.dynamorio.org/

	Abstract
	1 Background and Motivation
	2 Key Contributions of the Paper
	References

