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Abstract—Multi-GPU systems are being widely used to train

deep neural networks (DNNs) as GPUs can significantly reduce the

training time. Data parallelism is a popular choice to train DNNs

on a multi-GPU system. GPUs in a multi-GPU system repeatedly

perform Forward Propagation (FP), Backward Propagation (BP)

and, Weight Update (WU) to train a DNN. During the WU stage,

GPUs communicate with each other. To improve communication

time, different data transfer mechanisms and libraries have been

introduced by NVIDIA, and adopted by high-level frameworks to

train DNNs. We evaluate the use of two of the most popular

communication methods (peer-to-peer (P2P) data transfer and

NCCL library-based communication) for training DNNs on a

DGX-1 multi-GPU system. We profile and analyze the training

of five DNNs using 1, 2, 4 and 8 GPUs. Our analyses provide

insights into the software– and hardware–level limiting factors

for training DNNs on a multi-GPU system.

I. INTRODUCTION

From virtual personal assistants to video surveillance, we
observe the dominant presence of machine learning in our day-
to-day life. One of the popular categories of machine learning
is deep learning (DL). DL is very popular because it can
produce very high accuracy while solving complex problems
such as image classification, object detection, natural language
processing and speech recognition [1], [2], [5], [6].

Training a DNN on a multi-GPU system introduces new chal-
lenges including data distribution across GPUs, communication
and synchronization among GPUs. The programmer can use
data parallelism or model parallelism [7]. Both approaches re-
quire data to be transferred and synchronized across GPUs. We
can parallelize the computation for training DNNs. However,
the GPUs still need to communicate with each other during
the different phases of training. Recent multi-GPU systems
support different methods and libraries for GPU-to-GPU com-
munication. We evaluate the effectiveness of the hardware– and
software– level solutions to reduce the communication time.

We train five DNNs: GoogLeNet, AlexNet, Inception-v3,
ResNet and LeNet, on NVIDIA’s Volta-based DGX-1 system
to identify the performance bottlenecks. These workloads have
a wide variety in terms of computation and communication.
We analyze the speedup in the training of various DNNs with
respect to GPU count on the DGX-1 multi-GPU system. We
identify hardware-level and software-level bottlenecks that exist
in training of DNNs using multi-GPU systems. The hardware-

level bottlenecks include computation, communication and
memory capacity while the software-level bottlenecks include
programming framework for DNN and NCCL library.

We analyze Forward Propagation (FP), Backward Propaga-
tion (BP), and Weight Update (WU) stages that repeatedly
occur during the training of a DNN. We measure the time
spent in computation– and communication–intensive stages. We
also measure the time and memory requirement for training
the DNNs for both the peer-to-peer (P2P) data transfer method
and NCCL library based communication method. Based on our
analysis, we identify the bottlenecks and provide guidance on
how to improve the performance of each stage.

II. MULTI-GPU DNN TRAINING

Multi-GPU systems can accelerate the training of a DNN by
parallelizing the training process. Figure 1 shows the timeline
for training DNNs with a multi-GPU system consisting of
4 GPUs using data parallel synchronous stochastic gradient
descent (SGD) algorithm. The training process starts with the
CPU generating the network model parameters and transferring
the parameters along with a unique mini-batch of data to all
the GPUs. After receiving the data, GPUs perform FP and
BP to calculate the local gradients. These local gradients are
averaged and synchronized across multiple GPUs, typically
using a tree reduction topology. Only one GPU (GPU0 in this
example) uses the averaged gradients to update the weights
(network parameters) and transfers the updated weights to all
other GPUs, typically using a broadcast operation. This process
continues for a specific number of epochs. 1

III. DGX-1 VOLTA MULTI-GPU SYSTEM

We perform our evaluations on a NVIDIA’s Volta-based
DGX-1 system [4]. Figure 2 shows the network topology of the
Volta-based DGX-1 system. This system has two 20-Core Intel
Xeon E5-2698 v4 CPUs and each CPU is directly connected
to four Tesla V100 GPUs using PCIe interconnect. It can be
noticed that the GPUs are connected using a hybrid mesh cube
topology. There is asymmetry in the NVLink distribution as
each GPU can support a total of six NVLinks. This asymmetry
can lead to a challenge to the programmer as the programmer
has to be aware of the best routing path for GPU-to-GPU

1An epoch represents the processing of the entire dataset.
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Fig. 1: The timeline of an epoch during multi-GPU DNN train-
ing using the data-parallelism approach with synchronous SGD.
FP, BP, AVG, and AG represent forward propagation, backward
propagation, averaging, and add gradients, respectively. (This
figure is not drawn to scale.) [3]
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Fig. 2: Network Topology in a DGX-1 System. [3]

communication. This is because some paths have two NVLinks
(50 GB/s total bandwidth) while some path have one NVLink
(25 GB/s bandwidth) for GPU-to-GPU communication.

IV. EVALUATION

A detailed discussion of various analyses that we performed
when evaluating the DGX-1 system using DNN workloads is
provided in our IISWC 2018 paper [3]. Here, we summarize
those analyses. We compare the training time for 5 DNNs using
P2P memcpy and NCCL communication method. Our evalua-
tion based on training time provides the following insights:

• Increase in batch size results in linear decrease in per
epoch training time for all the five workloads we have
evaluated in this work. However, more efficient hardware
and software support is needed to facilitate training with
larger batch sizes.

• Increasing GPU count does not result in proportionate
reduction in training time. Speedup in the training with
an increase in GPU count depends on the computation-
intensity of the workload and the communication method.

• Having more computation-intensive layers in a DNN
workload leads to increased computation time. But we

can reduce the training time by increasing the number of
GPUs.

• For 4 and 8 GPUs, training time decreases significantly
with NCCL if the DNN workload has a sufficiently large
number of computation-intensive layers.

• Additional overhead associated with NCCL implementa-
tion (compared to P2P implementation) leads to increased
training time for smaller networks and GPU count of 1
and 2. Hence, NCCL should be used only if the GPU
count is 4 or more and the DNN has sufficient number of
compute-intensive layers.

We determine the breakdown of training time in compute-
intensive (FP+BP) and communication-intensive (WU) portions
for training DNNs. Based on the breakdown, we obtain the
following insights:

• As we increase the GPU count, time for FP+BP dominates
the training time for all the 5 workloads.

• To reduce the training time, GPUs need to perform signif-
icantly more computation during FP+BP stages compared
to the number of data transfers during WU stage. This can
be achieved by increasing batch size and correspondingly,
reducing the number of data transfers for a fixed dataset.

We also measure the GPU memory required to train the 5
different DNNs. Our memory analysis provide the following
insights:

• Although increasing the batch size reduces the training
time of DNNs for each epoch, the GPU memory capacity
limits the maximum batch size that can be used for training
DNN workloads.

• For large DNNs, the GPU memory required for interme-
diate outputs or feature maps is much more compared to
the GPU memory required for the DNN model.

V. CONCLUSION

We performed a thorough analysis to understand the compu-
tation and communication pattern of training different DNN
workloads on a Volta-based DGX-1 multi-GPU system. We
evaluated two of the mostly used GPU-to-GPU communication
methods (P2P memcpy and NCCL) in the context of deep learn-
ing. Our evaluation shows that multi-GPU scalability heavily
depends on the neural network architecture, batch size, and the
GPU-to-GPU communication method.
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