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ABSTRACT

Deep neural networks (DNN) have been utilized in numerous ma-
chine learning problems due to their high inference and general-
ization capabilities. Their signature features including their high
computational complexity and their hunger for large datasets have
made Graphical Processing Units (GPU) a suitable platform for ac-
celerating both their training and inference. However, semi-custom
IP blocks for ASICs and FPGAs now compete with GPUs in terms
of higher performance per watt and their ability to perform compu-
tations with variable number formats and word lengths. Our work
focuses on studying the effects of different number representation
on the training performance of DNNs. More specifically, we are
trying to replace the floating point number representation with
less accurate representations that tend to decrease the computa-
tional complexity, memory/bandwidth requirements, and power
consumption of DNN training while approximating the original full
precision classification accuracy of the final trained model. The goal
is to dynamically tune the number of bits in fixed-point number
representation during the training process and generate a hardware
accelerator that can adapt to this dynamic change and utilize it for
reducing power consumption. As an initial study of the impact of
the dynamic fixed-point number representation, we have conducted
a two-phase training of a 6-layer DNN on the CIFAR-10 dataset
with fixed-point calculations to measure classification performance,
and an ASIC/FPGA-based model for power consumption.
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1 PREVIOUS WORK

Recently, great effort has been made to replace the traditional single-
precision floating point number representation with lower preci-
sion alternatives. The main benefits of low precision computation
are lower power consumption, lower memory and bandwidth re-
quirements to load, store, and transfer the weights and activations
from off-chip memory, and higher clock speed because of the lower
computational complexity of low precision number representa-
tion compared to single precision floating point. This effort has
been challenging compared to quantizing DNN inference due to
the high dynamic range of weight gradients generated during the
back-propagation training algorithm. In one of the first efforts to
eliminate floating point representation, Authors of [2] have shown
that if a DNN is trained with fixed-point number representation
and using stochastic rounding, the classification performance of the
final model is very similar to the full-precision model. However, this

work has only focused on shallower DNNs and cannot be extended
to deeper ones (for example 7 or 8 layer networks).

Another method, High Accuracy Low Precision Training (HALP)
for quantizing the computations in Deep Neural Networks is dis-
cussed in [1]. A hybrid method is used; at each epoch, an initial
floating point back-propagation operation is performed and the
rest of the operations of the epoch are performed using fixed-point
representation. To deal with the large dynamic range of gradients
during training, two methods are proposed. Stochastic variance
reduced gradient (SVRG) is introduced for reducing the gradients,
dynamic range, and increasing convergence speed. Bit re-centering
is used at each stage to determine a scaling factor for storing all
the gradient values in fixed-point representation. We conducted
a number of different experiments using this algorithm [7] with
different fraction widths performed on a ResNet-18 network trained
on the CIFAR-10 dataset. As shown in Fig. 1, the trained network
maintains its performance until 4 bits of fraction width. However,
this approach in its current form is impractical for large datasets
since it needs orders of magnitude higher memory storage space to
store all the intermediate gradients for normalization at the end of
each epoch.
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Figure 1: HALP training results with different bit-widths

A new number representation called Flexpoint for training DNNs
is introduced in [4]. This number representation consists of a 16-bit
fixed-point number representation as an independent mantissa and
5 extra bits as a shared exponent between all the weights in a layer.
Compared to a full precision floating point implementation, this
representation halves the required memory to store the weights of
DNN, and by making sure all the operations are performed in fixed-
point, it decreases the computational complexity and subsequent
power consumption of the DNN operations. The Flexpoint scheme
with 16 bits of mantissa and a 5 bit shared exponent can match



the training accuracy of full precision floating point on multiple
different state-of-the-art deep networks.

Dynamic precision scaling has previously been addressed in [6].
However, in [6], the precision steps are large (training is toggling
between 16/8 bit or 32/16 bit fixed-point representations) and the
DNNs that have been studied are very small MNIST DNNs. They
have also not reported the power benefits of dynamic precision
tuning compared to a steady high-precision scheme.

2 DYNAMIC PRECISION TUNING AND
BLOCK FLOATING POINT

In the present work, all the operations of DNN training are per-
formed using fixed precision number representation. The main idea
is that the dynamic range of gradients is not the same during the
whole process of training, at the beginning of the training, gradients
are large and the weights change dramatically after each epoch
while at the end of the training process, the gradients get very small
and the weight changes are very subtle. Using this insight, we can
monitor the training process and tune the precision of the model
at each stage to the lowest precision possible.

The main benefit of this method is the lower communication
bandwidth between the processing unit and the off-chip memory
during low-precision training epochs which in turn helps with
the overall clock speed of the DNN training considering it is a
bandwidth-intensive operation. Using smart design practices, the
power consumption of the DNN accelerator can also be dynamically
tuned based on the chosen bit-width at each stage. The shorter bit-
widths result in lower switching activity and power consumption. 2
shows the result of an experiment on a ResNet network trained on
the CIFAR-10 dataset. The low precision DNN training was simu-
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Figure 2: HALP training results with different bit-widths

lated using a custom fixed-point library developed for Keras [5] and

it was run on GPUs provided to UMass Ambherst Faculty and Stu-
dents by the Massachusetts Green High-Performance Computing
Center (MGHPCC). The bar figure shows the estimated application
specific hardware power consumption calculated as rough mea-

sures based on [3]. The lines show training validation accuracy for
different number representations. The dynamic scheme uses 8-bit

fixed precision representation for the first half of training and full-
precision for the second half of training. As shown in 2, the hybrid
scheme has better power consumption compared to full-precision
with a slight degradation in accuracy.

3 LOOKING FORWARD

Based on our experimental method, we can explore a number of
extensions to this work. One of our goals is to find metrics during
the training process that help in determining the best epoch to scale
up or down the training precision. The current metric of training
accuracy is not necessarily the most informative metric compared to
alternatives such as statistical metrics of weight gradients including
minimum absolute value, the standard deviation of the first quantile,
and maximum value divided by minimum value.

Additionally, when migrating to deeper networks for larger
datasets, we may face situations where the dynamic range of even
the largest fixed-point number is not enough to cover all the gra-
dients. Here we can switch to a shared exponent floating point
number representation similar to Flexpoint and extend the idea of
dynamic precision tuning to the mantissa of FlexPoint representa-
tion.

We are also working on developing a custom hardware architec-
ture supporting different widths for fixed-point training of DNN
which can show better power and performance when switched
to lower bit-widths. The run-time power measurements from this
architecture can replace power estimations made in the previous
section.
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