

Formally Verifying Many RISC-V Implementations with One Page of
Code

Steven Hoover
Redwood EDA

Shrewsbury, MA, USA
steve.hoover@redwoodeda.com

Ákos Hadnagy
Delft University of Technology

Delft, Netherlands
akos.hadnagy@gmail.com

ABSTRACT
WARP-V is a CPU generator written using Transaction-Level
Verilog (TL-Verilog) that implements RISC-V (among other ISAs).
WARP-V has been formally verified using riscv-formal, an
open-source formal verification framework for RISC-V.
Timing-abstraction and transaction-level design embodied in
TL-Verilog are showing significant benefits for hardware modeling,
but this work is the first demonstration of their benefits for
verification modeling. The formal verification of all RISC-V
configurations of WARP-V is accomplished in a single page of code.

KEYWORDS
formal verification, open source, RISC-V, hardware description
language, digital logic, high-level modeling, transaction-level
design.

1 BACKGROUND
WARP-V [1] is a RISC-V core written in Transaction-Level Verilog
(TL-Verilog) [2][3]. The timing-abstract modeling of TL-Verilog
enables WARP-V to achieve an unprecedented level of architectural
flexibility and scalability. Readers unfamiliar with TL-Verilog’s
timing abstract and transaction-level design methodology are
referred to [2] and [3], respectively. The TL-Verilog tool flow
generates a variety of implementations from this flexible model.

Fig. 1. WARP-V Microarchitecture with RVFI

Fig. 1 depicts the WARP-V microarchitecture, and, in red, the
riscv-formal interface (RVFI) and the connections into it. Pipeline
stages (labeled in green) in Fig. 1 are “virtual” stages. A particular
configuration allocates virtual stages to the physical pipeline stages

of the implemented microarchitecture. All virtual stages can be
mapped to a single physical stage for a low-frequency
microcontroller, or to seven physical stages for a mid-range

mailto:steve.hoover@redwoodeda.com
mailto:akos.hadnagy@gmail.com

high-frequency CPU. TL-Verilog tools generate the actual sequential
logic implied from the staging.

The primary verification vehicle for WARP-V is an infrastructure
called riscv-formal [4], an open-source Verilog model-checking
framework for RISC-V. WARP-V was brought to life using a single
11-instruction test program. The remaining verification was entirely
done formally using riscv-formal.

2 VERIFICATION
Traditionally, verification of a flexible CPU generator is challenging.
A verification model must be generated that matches the flexibility
of the hardware model.

To utilize riscv-formal, a test harness is required to present
information about each retiring instruction to RVFI. This
information must be presented to RVFI in the same clock cycle.
Signals in the design that hold this information, however, are
distributed across the CPU pipeline. So, the test harness must stage
signals an appropriate number of cycles to present them in unison to
RVFI.

Load instructions are particularly challenging. Before presenting the
load to RVFI, all information characterizing the load must be
available. This includes the load result from memory, which is

available in WARP-V only after the load instruction has left the CPU
pipeline. Therefore, in order to present the load instruction to RVFI,
its information must be carried along with the load instruction as it
goes to memory and returns into the CPU pipeline to write into the
register file (depicted as the red loop through memory in Fig. 1.)

The staging and recirculation of signals are achieved by utilizing the
transaction-level design features of TL-Verilog. RVFI logic is
simply instantiated in the WARP-V model. As with TL-Verilog
hardware logic in WARP-V, the riscv-formal checkers fit naturally
into the CPU pipeline context and benefit from the transaction flow
context that recirculates returning load data. These contexts provide
automatic staging and recirculation of the signals needed as input to
RVFI along the red path in Fig. 1.

The only modeling required to connect the hardware model with the
verification model is the interface signal hookup and a bit of
combinational logic to map available signals in the model to the
expectations of RVFI. Also, a statement to select either the
instruction from the CPU pipeline or the one recirculated with the
load data is needed. This is the red multiplexer in Fig. 1.

3 RESULTS

Fig. 2. Code-size comparison among various configurations

Fig 2. illustrates the benefits of transaction-level design in
TL-Verilog versus RTL methodology in SystemVerilog by
comparing TL-Verilog code size and generated SystemVerilog code
size for various staging configurations with and without the
verification harness. The bars labeled “TL-Verilog” are nearly
equivalent code resulting from some preprocessing of the source
code. The harness can be seen to be minimal in the TL-Verilog code,
but it is much more significant in SystemVerilog. It grows with
pipeline depth, even becoming more significant than the TL-Verilog
source code.

4 SUMMARY

A single compact code base generates multiple different and larger
SystemVerilog models with their formal verification harness.

REFERENCES

[1] https://github.com/stevehoover/warp-v

[2] S. F. Hoover, "Timing-Abstract Circuit Design in Transaction-Level
Verilog," 2017 IEEE International Conference on Computer Design
(ICCD), Boston, MA, 2017, pp. 525-532.

[3] S. F. Hoover and A. Salman. “Top-Down Transaction-Level Design
with TL-Verilog.” CoRR abs/1811.01780 (2018): n. pag.

[4] https://github.com/cliffordwolf/riscv-formal

https://github.com/stevehoover/warp-v
https://github.com/cliffordwolf/riscv-formal

