
Hardware-Software Coordination for High Performance
Concurrent Data Structures with Near-Data-Processing

Jiwon Choe1

jiwon choe@brown.edu

Amy Huang1

amy huang1@brown.edu

R. Iris Bahar1

iris bahar@brown.edu

Maurice Herlihy1

mph@cs.brown.edu

Tali Moreshet2

talim@bu.edu

1Brown University, 2Boston University

Recent advances in three-dimensional (3D) die-stacking
technology have renewed the interest in near-data-processing
(NDP) (also referred to as near-memory-computing) as a way
around the memory wall [8]. We investigate how near-memory
accelerators can be combined with novel concurrent data struc-
ture algorithms in order to exploit the low-latency, high-
bandwidth memory access of NDP architectures, while also
preserving the high concurrency of conventional architectures.
Concurrent data structures are used in many applications, and
adapting them to NDP architectures is a key step towards mak-
ing such architectures useful.

3D die-stacked memory consists of multiple DRAM dies
stacked on top of a single logic die. The memory is divided
into vertical sections: the memory dies of the vertical sec-
tion form the NDP vault, which contains multiple DRAM
banks, and the logic die of the vertical section contains a near-
memory compute unit (NDP core) and a memory controller
(NDP controller) that manages memory requests to the cou-
pled NDP vault. We assume that the NDP core is a simple
in-order, single-cycle processor without cache.

Liu et al. [6] described how the flat-combining (FC) syn-
chronization scheme [5] can be applied to NDP-based linked-
lists, skiplists, and FIFO queues to manage concurrency. How-
ever, these data structures were not empirically tested, relying
instead on theoretical performance analysis based on simple
hardware latency assumptions.

Figure 1 shows the various NDP-based data structures. The
data structure resides in one or more NDP vaults, and each
NDP core has exclusive access to the portion of the data
structure contained in its coupled NDP vault. Host processor
threads can simply send data structure operation requests (e.g.
contains(X), add(X), remove(X)) to the correspond-
ing NDP core. Each NDP core can combine the concurrent re-
quests and execute them on behalf of host threads, while each
host thread waits for the NDP core to complete its requested
operation.

In our work, we implement and test these NDP-based data
structures on a full-system NDP architecture framework with
realistic hardware constraints. To this end, we extended SMC-
Sim [1], a gem5 [2] cycle-accurate full-system simulator with
the software stack and hardware support for NDP.

Through this more realistic and detailed analysis, we find
that Liu et al.’s work had overestimated the performance ben-
efits of NDP-based data structures. The theoretical analysis
had two major pitfalls: 1) it ignored the cache impacts in host-
based concurrent data structure performance, and 2) it had
overly optimistic assumptions on near-data-processing mem-
ory access latencies. We address these shortcomings and show

that lightweight changes to hardware – inspired by observa-
tions on data structures’ data access patterns and underlying
DRAM activity – can significantly improve NDP-based data
structure performance while using the same algorithm.

We observe that data structure operations exhibit temporal
and spatial locality at DRAM row granularity. For list traver-
sal in linked-lists or skiplists, the NDP core reads two words
of information from each node, back-to-back: the node’s key
value and the pointer to the next node. A single node is stored
in contiguous memory (i.e. in the same DRAM row). This
implies that data in a single row is accessed twice consecu-
tively. The FIFO queue has an even higher rate of row hits.
Queue items are stored successively in memory, according to
queued order, so consecutive deq operations access all items
in a DRAM row before moving onto the next row.

However, because the NDP core is a simple in-order proces-
sor without cache, it requests for only one word of data from
memory at a time. In a typical memory controller, every mem-
ory access request is translated into a separate DRAM access
operation, regardless of the row locality. With the close-page
row-buffer-management policy, this leads to repetitive row ac-
tivations and data movement. Even with the open-page policy,
in which an activated row is kept open until another memory
access requires activating a different row, delays associated
with repetitive data movement are not removed. Moreover,
data is transferred from a DRAM bank to the memory con-
troller in units of bursts (consecutive columns of data), which
is often larger than one word. If the NDP core requests for only
one word of data, the unused extra data is discarded, when of-
tentimes the next request would need data from the very same
burst.

To address these issues, we add a small buffer to the NDP
controller. This buffer can be thought of as a single-block
cache placed in the memory controller. The buffer size de-
pends on the data structure, in order to prevent unnecessary
data movement. For the linked-list and skiplist, the buffer size
is equal to the node size, and for the FIFO queue, it is equal to
the DRAM row size.

Figure 2 shows our modified design. Only two new hard-
ware components are needed for the buffer design: the buffer
itself, which holds the most recently accessed block of data,
and a tag register, which holds the tag portion of the buffered
block’s memory address. Upon receiving a data read request
(step 1), the NDP controller first checks if the tag of the re-
quested data address matches the tag register (step 2). If so,
the request is responded to immediately (step 5). This removes
delays associated with accessing data in DRAM banks. Only
if the requested data is not in the data buffer, the NDP con-

1



NDP vault

host processorhost processor host processor host processor. . .

1 4 6 8 10 11 12 26202

publication
list

NDP core

add(5)

5

1

contains(7)2
remove(11)3

X
contains(20)4

remove(11)contains(7) add(5) contains(20)
12 34

remove(11)contains(7) add(5) contains(20)

(a) Flat combining and operation sorting linked-
list.

1

1

1

1

4

4

43 6

8

8

10

10

10

10 11

12

12 26

20

20

20

20

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

contains(7) remove(4) contains(13) add(21)

NDP core 2NDP core 1

NDP vault 1: [0-9], NDP vault 2: [10-19], NDP vault 3: [20-29]

(b) Partitioned and flat combining skiplist.

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

deq() enq(32) enq(21)

NDP core 2NDP core 1

current deq: NDP vault 1, current enq: NDP vault 3

NDP vault 4

NDP core 4

deq()

89

34

1

58

91

27

33

42

77

102

5

32

21

head

tail

(c) Partitioned and flat combining FIFO queue.

Figure 1: NDP-based concurrent data structure design.

read request
requested address: R V

tag register

data buffer

NDP controller

NDP
core

NDP
vault

DRAM
read queue

1

2

3

4

5

Figure 2: Proposed NDP controller design. The tag register
and data buffer are added to the existing NDP controller. Steps
3 and 4 are skipped if the tag portion of the requested read
address matches the tag register content.

troller creates DRAM access operations to fill the buffer (steps
3, 4).

For the NDP-based linked-list (Figure 1a), we assume that
the entire list is contained in a single NDP vault. The NDP
core combines and sorts received operations in order of the re-
quested keys, which allows the NDP core to execute all com-
bined operations over a single traversal through the list.

We set the initial linked-list to be approximately 5MB in
total size (2.5x L2 cache size). Performance is measured in
terms of operation throughput – number of data structure op-
erations completed within a fixed time. We implement the
NDP-based linked-lists with the NDP controller as described
in Figure 2 (NDP ctrl buffer) and with the NDP controller
as a generic, unmodified memory controller. For the latter,
we evaluate using the close-page and open-page row-buffer-
management policies (NDP close-page and NDP open-page,
respectively). At eight concurrent threads, NDP close-page
barely performs better than host lazy-lock [4], the state-of-
the-art concurrent linked-list implementation. However, NDP
open-page and NDP ctrl buffer have 16.4% and 73.7% higher
operation throughput than host lazy-lock, respectively.

The NDP-based skiplist (Figure 1b) is optimized by parti-
tioning the skiplist across multiple NDP vaults based on pre-
defined disjoint range of keys. Host processors send operation
requests to the appropriate NDP core based on the requested
operation key. Increasing the number of partitions enhances
concurrency and thereby improves performance; here we dis-
cuss the results from using eight skiplist partitions.

Based on the findings from the linked-list, we evaluated
the NDP-based skiplists with the unmodified NDP controller

using open-page row-buffer-management policy (NDP open-
page) and with the modified NDP controller (NDP ctrl buffer).
When the initial skiplist size is set to 850MB, at eight con-
current threads, NDP open-page has 6.8% lower operation
throughput than host lock-free [3], the state-of-the-art host-
based concurrent skiplist implementation. However, the hard-
ware modification significantly improves performance, and
NDP ctrl buffer shows 7.4% higher operation throughput than
host lock-free.

Cache effects account for the relatively high performance
of host lock-free. The skiplist is inherently a balanced tree-
like structure, so a skiplist operation always begins at the few
high-level nodes and traverses through only O(log2 N) nodes
(where N is the total number of nodes in the skiplist). There-
fore, higher-level nodes are likely to remain in cache, and only
a small number of accesses actually go out to memory, even
with a skiplist that is much larger than last-level cache.

The NDP-based FIFO queue (Figure 1c) is optimized based
on flat-combining and partitioning. The NDP core effectively
removes contention at the head and tail, for it is the only
thread that operates on the data structure. Partitioning the
queue across multiple NDP vaults allows for separate enq and
deq partitions and adds parallelism. Again, we implement
the NDP-based queue with unmodified NDP controllers using
open-page row-buffer-management policy (NDP open-page)
and with the modified NDP controller (NDP ctrl buffer). We
compare the results against host lock-free queue [7], the state-
of-the-art concurrent queue, which can be implemented as a
circular array with head and tail indices (array-based) or as a
linked-list with head and tail node pointers (list-based).

At eight concurrent threads, NDP open-page and NDP
ctrl buffer show 40.5% and 48% higher operation throughput
than list-based host lock-free. However, because the array-
based host lock-free uses fewer atomic operations for each
enq or deq operation compared to the list-based host lock-
free, array-based host lock-free completely outperforms either
NDP-based implementation. Nevertheless, while the opera-
tion throughput for either host lock-free queue flattens out with
increasing number of threads, the throughput for NDP-based
queues scale linearly, and we expect the NDP-based queues
to outperform even the array-based host lock-free with more
concurrent threads.

2



References
[1] AZARKHISH, E., ROSSI, D., LOI, I., AND BENINI, L. Design and

evaluation of a processing-in-memory architecture for the smart memory
cube. In International Conference on Architecture of Computing Systems
(2016), Springer, pp. 19–31.

[2] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K.,
SAIDI, A., BASU, A., HESTNESS, J., HOWER, D. R., KRISHNA, T.,
SARDASHTI, S., ET AL. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[3] FOMITCHEV, M., AND RUPPERT, E. Lock-free linked lists and skip
lists. In Proceedings of the Twenty-third Annual ACM Symposium on
Principles of Distributed Computing (New York, NY, USA, 2004), PODC
’04, ACM, pp. 50–59.

[4] HELLER, S., HERLIHY, M., LUCHANGCO, V., MOIR, M., SCHERER,
W. N., AND SHAVIT, N. A lazy concurrent list-based set algorithm.
In Proceedings of the 9th International Conference on Principles of
Distributed Systems (Berlin, Heidelberg, 2006), OPODIS’05, Springer-
Verlag, pp. 3–16.

[5] HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR, M. Flat combin-
ing and the synchronization-parallelism tradeoff. In Proceedings of the
22nd Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures (2010), SPAA ’10, ACM, pp. 355–364.

[6] LIU, Z., CALCIU, I., HERLIHY, M., AND MUTLU, O. Concurrent data
structures for near-memory computing. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures (2017), SPAA
’17, ACM, pp. 235–245.

[7] MICHAEL, M. M., AND SCOTT, M. L. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed Com-
puting (New York, NY, USA, 1996), PODC ’96, ACM, pp. 267–275.

[8] WULF, W. A., AND MCKEE, S. A. Hitting the memory wall: implica-
tions of the obvious. ACM SIGARCH computer architecture news 23, 1
(1995), 20–24.

3


