Securing the Processor-to-Processor and Processor-to-Memory
Communication Links

Georgios Angelopoulos, Craig S. Barner and Richard E. Kessler
Marvell Technology Group, Ltd
Marlborough, MA, USA
(georgiosa, cbarner, rkessler)@marvell.com

ABSTRACT

The growing need for privacy and intellectual property protection
coupled with the exponentially increasing number of computing
devices and generated data obviate for secure compute and storage
platforms. However, remote machines with potentially malicious
hardware and highly sophisticated software attacks pose a signifi-
cant challenge. Ensuring confidentiality, integrity and anti-replay
of data and code in uniprocessor and (symmetric or distributed
shared memory) multiprocessor systems isn’t a trivial task. In this
work, we review the literature and compare several cryptographic
primitives for their performance and computational requirements.
Careful selection of the primitives, some of them been considered,
to the best of our knowledge, for the first time in the above settings,
results in significantly lower area, power and latency overheads.

1 INTRODUCTION

Although security of compute and storage systems has been of
utmost importance since the early days of their inception, it still
remains an evolving topic that receives significant attention from
both the academic and industrial communities. Recent advances
in software and hardware design obsolete existing solutions and
obviate for security approaches that have never been thought in
the past. For instance, in virtualized scenarios with cloud appli-
cations being executed on remote, third-party machines located
on Infrastructure-as-a-Service (IaaS) premises, not only strong iso-
lation among the numerous applications sharing the resources is
desired, but also executed code may not fully trust pieces of the op-
erating system (OS) with higher privileges, such as the hypervisor,
of the host system or some of its hardware components. An other
example is advances in non-volatile RAM technologies, being able
to retain stored values even when removed from power supply for
extended periods of time, lowering the barrier for cold-boot and
related attacks, compared to rapidly leaking DRAM modules.
Trusted execution environments (TEEs) and isolated application
compartments, usually called enclaves, have been developed as a
response to the above challenges, claiming that applications’ data
remain safe even if the OS, hypervisor and hardware have been
compromised. During boot-up, a small subset of the chip, called
root of trust, initiates a process serially verifying and adding other
blocks, gradually expanding the boundaries of the secure part of the
chip. Most security vulnerabilities exist when data cross this trust
boundary and are exposed to attackers. Usually, the trust boundary
is the borders of the chip and two potential avenues for attacks
are the processor-to-memory (RAM) and processor-to-processor
communication links, as shown in Fig. 1. Inadequate security mea-
sures on these links can result in leakage of sensitive information,

Processor 1 Processor 2

ko ko
5 Core 1 5 Core 1
g AW g
(&) (&)
> >
£ £
(0] (0]
= Coren = Coren
Main Memory Main Memory

Figure 1: Multiprocessor system with non-authorized user
attacking, passively and/or actively, the platform through
the off-chip communication links.

e.g. passwords, or even in system-wide attacks. Confidentiality,
integrity and freshness of data for intra- and inter-socket commu-
nication should generally be of equal importance.

Several encryption and authentication algorithms have been
proposed in the literature for this purpose; AES in CBC mode [15]
and Merkle hash trees [2, 11] are the most frequent techniques to
ensure confidentiality and integrity, respectively. A few alternative
methods are summarized in [4, 8, 13] and in their references. How-
ever, we are far from a fully secure system as proved by the many
recent attacks [5, 14] on platforms initially designed and considered
as ‘bullet-proof” from a security perspective [6].

Majority of vulnerabilities are architectural/micro-architectural
flaws and races leaking secrets, not adhering to known-good cod-
ing practices and poor entropy or pseudo-random sources. Cryp-
tographic primitives are less often the culprit of security attacks
however they typically exhibit high computational complexities,
translated to large die area and power consumption. Because of the
speed-gap between processors and memory (processor speed grows
by, on average, 18% per year more than memory speed [7]) and the
capacitance-dominated off-chip electrical links, adding encryption
and authentication latency to these already strained interfaces can
be a system performance limiting factor.

For the previously mentioned reasons, carefully choosing the
cryptographic primitives of optimal complexity for every use case
might enable architects and designers to allocate more resources
on architecturally securing the operation of a system, ultimately
resulting in smaller attack surface. In this work, we review the

Cipher | Area (kGE) | Latency (cycles) | Normalized Power
AES 78 20 23

PRINCE 45 5 1

Table 1: Comparison of block ciphers. Industry standard

PnR tools were used and a target frequency of 2.6GHz.

state-of-the-art encryption ciphers and authentication algorithms,
and, by carefully employing the right primitives, we demonstrate
significant power and area savings compared to [6, 9] and [10, 12]
in processor-to-memory and processor-to-processor interfaces.

2 DATA CONFIDENTIALITY, INTEGRITY
AND ANTI-REPLAY

Data confidentiality is achieved by concealing data before their
off-chip transmission so that only intended recipients with appro-
priate private keys can decrypt them. This prevents passive attacks
such as eavesdropping. Active attacks of corrupting the data with
malicious patterns are prevented by verifying that received infor-
mation creates a signature or cryptographic digest that matches
the expectations of a legitimate receiver; this process is called data
authentication. Recording a transmitted transaction and inserting
it at a later point of time (temporal permutation) or at a different
address (spatial permutation) are generally known as replay attacks.

AES is considered the default mechanism for data confidentiality
and is the preferred cipher in most intra- and inter-socket systems
[6, 9, 15]. Although secure, its high-speed implementation exhibits
significant complexities and consumes scarce chip-area resources.
We propose the use of an alternative primitive, initially designed
for sensor networks, called PRINCE [3]. PRINCE is a 64-bit block
cipher with a 128-bit key based on the substitution-permutation
principle, achieving security against linear and differential attacks.

The main benefits of using PRINCE cipher compared to AES
are the following: i) Key expansion: Key schedule is almost instan-
taneous, without need for storing the expanded key or incurring
the expansion overhead in every operation, ii) Low latency: Re-
duced number of rounds, each one exhibiting short logic depth, and
iii) Low area: Counter mode of operation in block ciphers relaxes
the additional introduced latency but short logic depth translates
to smaller footprint; utilizing 4-bit SBox’es and balancing their
complexity to the linear layer, the required area of PRINCE is sig-
nificantly reduced, as shown in Table 1 in gate equivalents (GE). In
addition, PRINCE encryption and decryption operations are sym-
metrical, having the a-reflection property. This enables almost the
same hardware unit to perform both operations, further reducing
area requirements. Above features make PRINCE an ideal candidate
against other lightweight ciphers [1].

Counter mode of operation requires a random nonce for every
processed block. In our system, we propose the use a counter, com-
bining temporal and spatial information to avoid same-nonce and
replay attacks. However, if not carefully performed, managing the
counters can result in excessive storage space. In our case, we lever-
age the already existing protocol information, and achieve minimal
overhead. For instance, in the inter-socket link, a function of the

sequence numbers of the coherent processor interconnect protocol
are used as the counter. Memory authentication is achieved using

PRINCE cipher in Galois counter mode (GCM), combined with a
parallelizable Merkle tree that balances the additional bandwidth
overhead with the on-chip storage requirements. A local cache
is also used to further optimize memory accesses and speed up
integrity checks.

3 CONCLUSION

Communication buses used to interconnect the processor with the
main memory or other processors are usually exposed to passive
and active attacks. Securing these high-speed and low-latency links
under the tight area and power constraints of modern compute
platforms can be challenging. In this work, we review several cryp-
tographic primitives and propose a system that achieves similar
security guarantees as state-of-the-art but with significantly lower
area and power requirements. This is achieved by selecting appro-
priate confidentiality and authentication algorithms, and carefully
integrating them into the intra- and inter-socket communication
interfaces.

REFERENCES

[1] Alex Biryukov and Leo Perrin. 2017. State of the Art in Lightweight Symmetric

Cryptography. Cryptology ePrint Archive, Report 2017/511. (2017).

M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. 1994. Checking the

Correctness of Memories. Algorithmica 12, 2-3 (Sept. 1994), 225-244. https:

//doi.org/10.1007/BF01185212

Julia Borghoff et al. 2012. PRINCE - A Low-latency Block Cipher for Pervasive

Computing Applications. Cryptology ePrint Archive, Report 2012/529. (2012).

Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B. Lee, Nachiketh

Potlapally, and Lionel Torres. 2009. Transactions on Computational Science

IV. Chapter Hardware Mechanisms for Memory Authentication: A Survey of

Existing Techniques and Engines, 1-22.

[5] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2017. Another Flip in the Wall
of Rowhammer Defenses. CoRR abs/1710.00551 (2017).

[6] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Report 2016/204. (2016).

[7] JohnL.Hennessy and David A. Patterson. 2006. Computer Architecture, Fourth Edi-

tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

Michael Henson and Stephen Taylor. 2014. Memory Encryption: A Survey of

Existing Techniques. ACM Comput. Surv. 46, 4, Article 53 (March 2014), 26 pages.

https://doi.org/10.1145/2566673

[9] D. Kaplan, J. Powell, and T. Woller. 2016. AMD memory encryption (v7).

(2016). https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_

Encryption_Whitepaper_v7-Public.pdf

Kevin Lepak, Gerry Talbot, Sean White, Noah Beck, S Naffziger, et al. 2017. The

next generation amd enterprise server product architecture. IEEE Hot Chips 29

(2017).

[11] R. C. Merkle. 1980. Protocols for Public Key Cryptosystems. In 1980 IEEE Sympo-

sium on Security and Privacy(SP), Vol. 00. 122. https://doi.org/10.1109/SP.1980.

[2

[3

[4

[8

[10

10006
[12] David Mulnix. 2017. Intel Xeon Processor Scalable Family Technical
Overview. Intel Corporation. https://software.intel.com/en-us/articles/

intel-xeon-processor-scalable-family-technical-overview

Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and Chenghuai Lu. 2004.
Architectural Support for High Speed Protection of Memory Integrity and Con-
fidentiality in Multiprocessor Systems. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques (PACT 04).

[14] Jo Van Bulck et al. 2018. Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-order Execution. In Proceedings of the 27th USENIX
Conference on Security Symposium (SEC’18).

Youtao Zhang, Lan Gao, Jun Yang, Xiangyu Zhang, and Rajiv Gupta. 2005. SENSS:
security enhancement to symmetric shared memory multiprocessors. In 11th
International Symposium on High-Performance Computer Architecture. 352-362.

[13

[15

https://doi.org/10.1007/BF01185212
https://doi.org/10.1007/BF01185212
https://doi.org/10.1145/2566673
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1109/SP.1980.10006
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

	Abstract
	1 Introduction
	2 Data Confidentiality, Integrity and Anti-replay
	3 Conclusion
	References

