
Post-Quantum Cryptographic Hardware Primitives
Lake Bu, Rashmi Agrawal, Hai Cheng, and Michel A. Kinsy

Adaptive and Secure Computing Systems Laboratory
Department of Electrical and Computer Engineering, Boston University

(bulake, rashmi23, chenghai, mkinsy)@bu.edu
ABSTRACT
The development and implementation of post-quantum cryptosys-
tems have become a pressing issue in the design of secure com-
puting systems, as general quantum computers have become more
feasible in the last two years. In this work, we introduce a set
of hardware post-quantum cryptographic primitives (PCPs) con-
sisting of four frequently used security components, i.e., public-
key cryptosystem (PKC), key exchange (KEX), oblivious transfer
(OT), and zero-knowledge proof (ZKP). In addition, we design a
high speed polynomial multiplier to accelerate these primitives.
These primitives will aid researchers and designers in constructing
quantum-proof secure computing systems in the post-quantum era.

KEYWORDS
Post-quantum cryptography, public-key system, key exchange,
oblivious transfer, zero-knowledge proof, FPGA-based prototyping.

1 INTRODUCTION
In the last three years, we have witnessed a raft of breakthroughs
and several key milestones towards the development of general
quantum computers. These advances do bring with them criti-
cal challenges to classical cryptosystems like RSA (Rivest-Shamir-
Adleman), ECC (Elliptic Curve Cryptography), and ElGamal. The
strength of these classic algorithms rests on the hardness of integer
factorization and discrete logarithm problems, which do not hold
under quantum computing approaches. Thus, researchers have been
actively investigating new algorithms and designs for cryptosys-
tems for the post-quantum era. Among these techniques, designs
based on Ring-learning with errors (Ring-LWE) [2] thus far have
proven to be the most promising approach. Ring-LWE-based cryp-
tosystems have the following advantages (i) their security reduction
is a modification of the shortest vector problem (SVP) and closest
vector problem (CVP), which are known to be NP-hard, and so
far there are no efficient classical or quantum algorithms to solve
them; (ii) they can support homomorphic encryption (HE) schemes;
(iii) they have much smaller key size comparing with other cryp-
tosystems; (iv) finally, in some cases, they lend themselves to more
efficient hardware implementations than their classical competitors.
In contrast to the extensive literature on the study and software
implementation of the Ring-LWE algorithm, there has been little
work on its efficient hardware implementation. Recently, a handful
of works have explored the FPGA implementation of the KEX [3],
and even less the PKC [4]. There is also a general lack of discussion
on the design and hardware implementation of other cryptographic
primitives such as oblivious transfer (OT) and zero-knowledge
proof (ZKP), which play critical roles in many applications such as
private machine learning and crypto-currencies using blockchain.
Therefore, in this work, we construct a small representative set
of reusable, standalone hardware modules of these post-quantum

cryptographic primitives (PCPs). They can serve as the fundamen-
tal building blocks for a wide range of secure systems. In the work
we demonstrate (1) a high speed polynomial multiplier design to
aid in the efficient hardware implementation of these primitives,
and (2) new algorithms for the OT and ZKP primitives.

2 THE PCP HARDWARE PRIMITIVES
2.1 The Public-Key Cryptosystem (PKC) and

Key Exchange (KEX) Primitives
The detailed algorithms of the public-key cryptosystem (PKC) and
key exchange (KEX) can be found in [2] and [1], respectively. For
brevity, we will only briefly introduce the PKC algorithm, since
many of its sub-modules are reused in the KEX primitive.

Algorithm 2.1. Let the ring Rq be Rq = R/⟨q⟩ = Zq [x]/⟨f (x)⟩,
where f (x) = xn + 1 is an irreducible polynomial with n a power of
2, and q ≡ 1 mod 2n is a large prime number. Thus Rq is a ring of
integer polynomials modulo both f (x) andq, and it hasqn elements.
Let X be a Gaussian distribution of “small” errors/noise. If t = ⌊ q2 ⌋,
a,b ∈ Rq and s, e, r0, r1, r2 ← X, then the public key encryption
protocol between Alice and Bob is as follows.

Key generation: Alice picks s and a random e to generate the
public key pk = {a,b} and the private key sk = {s} by:

b = a · s + e (1)
Encryption: Bob converts his message (plaintext) into a binary

vectorm of length n, and generates the cipher {c0, c1} as:{
c0 = b · r0 + r2 + tm,
c1 = a · r0 + r1.

(2)

Decryption: Alice decrypts the cipher by:
m = ⌈(c0 − c1 · s)/t⌋, (3)

where ⌈⌋ stands for taking the nearest binary integer.
The basic operations of the algorithms are: polynomial addition,

polynomial subtraction, scalar multiplication, scalar division then
taking the nearest binary integers, and polynomial multiplication.
Most of the operations are component-wise, or can be reduced to
conditional assignment. The polynomial multiplication operation
has the highest hardware implementation complexity. An efficient
multiplication module will substantially improve the hardware
implementation efficiency of the entire hardware crypto-primitive
suite. Figure 1 shows a system architecture using the commonly
shared hardware modules.

One of the common implementations of the polynomial mul-
tiplier, is negative wrapped convolution combined with butterfly
number-theoretic transform (NTT, the finite field version of FFT).
This approach takes O(nlogn) multiplications and has a time com-
plexity of O(logn). In this work, we are introducing a new and
high-speed design of the modular polynomial multiplier, named
Preemptive Adaptive Reduction Multiplier (PARM).

ar
X

iv
:1

90
3.

03
73

5v
1 

 [
cs

.C
R

] 
 9

 M
ar

 2
01

9



Decryption 
Key Generation 

Encryption 

b

Noise Sampler r1

r0
Poly 
MUL 

Mod 
Redu 

Poly 
Add c0

Scalar 
MUL 

[q/2]

m

Poly 
MUL 

Mod 
Redu 

Poly 
Add 

c1
r2

a

Message to Encrypt

Cipher In

Cipher Out
Public Key In

Public Key Out
Noise Sampler

RNG

e

s
Poly 
MUL 

Mod 
Redu 

Poly 
Add 

b

a

Nearest
Binary
Integer

of 
u/[q/2] 

c0

c1

s
Poly 
MUL 

Mod 
Redu 

Poly 
Sub 

m

u

Decrypted Message

Application System

Interface

Figure 1: The three core building blocks for the primitives: Key Generation (KeyGen), Encryption (Enc), and Decryption (Dec).

It calculates the generalized representation of the product in
advance. Thus, given two polynomial multiplicands, their product
can be computed as fast as in one step.

Figure 1: The three core building blocks for the primitives: Key Generation (KeyGen), Encryption (Enc), and Decryption (Dec).

It calculates the generalized representation of the product in
advance. Thus, given two vector multiplicands, their product can
be immediately computed in one step.

Alg. 1: Preemptive Adaptive Reduction Multiplier (PARM)
1 Let a = {a0, · · · ,an−1},b = {b0, · · · ,bn−1} ∈ Zq [x]/⟨f (x )⟩

(where f (x ) = xn + 1) be two n-bit vectors, and
P (X ) the primitive polynomial of the ring.

2 Let d = {d0, · · · ,dn−1}, e = {e0, · · · , en−1} where di , ei are
merely variable names.

3

4 Precompute:
5 ĉ ← d ⊛ e (⊛ for convolution) such that
6 ĉ = ĉ0 + ĉ1x1 + · · · ĉn−1xn−1 + ĉnxn + · · · ĉ2n−2x2n−2
7 # Approach 1: by using P(x) for reduction
8 for i=n to 2n-2 do
9 x i = l0 + l1x1 + · · · + ln−1xn−1
10 By substituting {xn , · · · x2n−2} to ĉ
11 c = c0 + c1x1 + · · · cn−1xn−1
12 # Approach 2: by using f(x) for reduction
13 c ← ĉ/f (x ) = c0 + c1x1 + · · · cn−1xn−1
14 Denote ci = дi (d, e ), where дi is a general

representation of ci by d, e.
15

16 Real-time:
17 for i=0 to n-1 do
18 ci ← дi (a,b)
19 end for
20

21 return c

As shown in the algorithm 1 outline, the bulk of the work is
performed in the “Precompute” stage, which is done only once
in the lifetime of the multiplier’s. The real time computation is
just n calculations of ci ← дi (a,b), which can be done fully in
parallel (1 cycle) given enough multipliers (n2). The resource and
time complexities for PARM algorithm are O (n2) multiplications
and O (1) cycles, while the NTT-based complexities O (nlogn) and
O (logn), respectively.

2.2 The Oblivious Transfer (OT) Primitive
The OT mechanism enables a receiver to choose and receive a cer-
tain piece of information out of many pieces from the sender, while
remaining oblivious to the other pieces. The sender is also oblivious
to the exact piece selected. The OT is a widely used protocol in
privacy-preserving computations between two or multiple parties.
The proposed OT primitive is constructed on the foundation of

the PKC primitive. We denote KeyGen(s,a) = b as the Key Gen-
eration module, Encpk (m) = {c0, c1} as the Encryption function,
and Decsk ({c0, c1}) =m as the Decryption module - Figure 1. The
proposed OT algorithm over ring Rq is as follows.

Algorithm 2.2. Suppose Alice uses KeyGen() to generate and
send a public key to Bob, and keeps the private pairing key to
herself. Alice has l n-bit binary messages {m1, · · · ,ml } and l n-bit
random binary vectors {r1, · · · , rl }.

(1) Alice sends {r1, · · · , rl } to Bob. Bob chooses the cth vector rc
in order to acquiremc . Thus Bob generates a random binary
vector K ∈ Rn2 and computes v to send to Alice:

v = rc + Encpk (K ). (4)
(2) For all i ∈ {1, 2, · · · , l }, Alice computes the set {m′i } and

sends it back to Bob:
m′i = Decsk (v − ri ) ⊕mi , (5)

where ⊕ is bitwise XOR.
(3) Bob computes his desiredmc while remaining oblivious to

othermi , i , c:
mc =m

′
c ⊕ K . (6)

2.3 The Zero-Knowledge Proof (ZKP) Primitive
The ZKP enables an entity to prove to a verifier that it knows a secret
value s , without revealing any information (including the value of
s) apart from the fact that it knows the value. Similar to the OT
primitive, the ZKP primitive is designed using the building blocks
the PKC algorithm in section 2.1. The proposed ZKP algorithm over
ring Rq is as follows.

Algorithm 2.3. Suppose Alice has a secret value s and needs to
prove her ownership of s to Bob.

(1) Alice uses KeyGen(a, s ) to generate b. Alice selects a binary
vectorm, and samples e ′, r ← X to generate c:

c = a · r +mt + e ′, (7)
where t = ⌊ q2 ⌋.
Alice sends {a,b,m, c} to Bob, and keeps s to herself.

(2) Bob samples u ← X, and interactively sends it to Alice.
(3) Alice responds with x to Bob:

x = r + s · u . (8)
(4) Bob computes and verifies if:

⌈(c − a · x + b · u)/t⌋ ?
=m, (9)

where ⌈⌋ stands for taking the nearest binary integer.
If the equality of [Eq. 9] stands, then Alice has successfully
proved her ownership of s to Bob.

2

As shown in the algorithm 1 outline, the bulk of the work is
performed in the “Precompute” stage, which is done only once in
the lifetime of the multiplier’s. The real time computation is just
n calculations of ci ← дi (a,b), which can be done fully in parallel
(1 cycle) given enough multipliers (n2). The resource and time
complexities for the PARM algorithm areO(n2)multiplications and
O(1) cycles latency, while the NTT-based complexities areO(nlogn)
multiplications and O(logn) cycles latency.

2.2 The Oblivious Transfer (OT) Primitive
The OT mechanism enables a receiver to choose and receive a cer-
tain piece of information out of many pieces from the sender, while
remaining oblivious to the other pieces. The sender is also oblivious
to the exact piece selected. The OT is a widely used protocol in
privacy-preserving computations between two or multiple parties.
The proposed OT primitive is constructed on the foundation of
the PKC primitive. We denote KeyGen(s,a) = b as the Key Gen-
eration module, Encpk (m) = {c0, c1} as the Encryption function,
and Decsk ({c0, c1}) =m as the Decryption module - Figure 1. The
proposed OT algorithm over ring Rq is as follows.

Algorithm 2.2. Suppose Alice uses KeyGen() to generate and
send a public key to Bob, and keeps the private pairing key to
herself. Alice has l n-bit binary messages {m1, · · · ,ml } and l n-bit
random vectors {r1, · · · , rl }.

(1) Alice sends {r1, · · · , rl } to Bob. Bob chooses the cth vector
rc in order to acquire mc . Thus Bob generates a random
binary vector K ∈ Rn2 and computes v to send to Alice:

v = rc + Encpk (K). (4)
(2) For all i ∈ {1, 2, · · · , l}, Alice computes the set {m′i } and

sends it back to Bob:
m′i = Decsk (v − ri ) ⊕mi , (5)

where ⊕ is bitwise XOR.
(3) Bob computes his desiredmc while remaining oblivious to

othermi , where i , c:
mc =m

′
c ⊕ K . (6)

2.3 The Zero-Knowledge Proof (ZKP) Primitive
The ZKP enables an entity to prove to a verifier that it knows a
secret value s , without revealing any information (including the
value of s) apart from the fact that it knows the value. Similar to
the OT primitive, the ZKP primitive is designed using the building
blocks the PKC algorithm in section 2.1.

Algorithm 2.3. Suppose Alice has a secret value s and needs to
prove her ownership of s to Bob.

(1) Alice uses KeyGen(a, s) to generate b. Alice selects a binary
vectorm, and samples e ′, r ← X to generate c:

c = a · r +mt + e ′, (7)
where t = ⌊ q2 ⌋.
Alice sends {a,b,m, c} to Bob, and keeps s to herself.

(2) Bob samples u ← X, and interactively sends it to Alice.
(3) Alice responds with x to Bob:

x = r + s · u . (8)
(4) Bob computes and verifies if:

⌈(c − a · x + b · u)/t⌋ ?
=m, (9)

where ⌈⌋ stands for taking the nearest binary integer.
If the equality of [Eq. 9] stands, then Alice has successfully
proved her ownership of s to Bob.

REFERENCES
[1] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum Key Exchange-A New Hope.. In USENIX Security Symposium, Vol. 2016.
[2] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and

learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1–23.

[3] Tobias Oder and Tim Güneysu. 2017. Implementing the NewHope-Simple key
exchange on low-cost FPGAs. Progress in Cryptology–LATINCRYPT 2017 (2017).

[4] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and
Ingrid Verbauwhede. 2014. Compact ring-LWE cryptoprocessor. In International
Workshop on Cryptographic Hardware and Embedded Systems. Springer, 371–391.

2


	Abstract
	1 Introduction
	2 The PCP Hardware Primitives
	2.1 The Public-Key Cryptosystem (PKC) and Key Exchange (KEX) Primitives
	2.2 The Oblivious Transfer (OT) Primitive
	2.3 The Zero-Knowledge Proof (ZKP) Primitive

	References

