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Malware Explosion

Figure: Exponential Growth in Total Number of Malware[av-test.org 2017]
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Malware Explosion

Figure: the Damage of Malware [av-test.org 2017] [verdict.co.uk 2017]
[StrongArm.io][thehackernews.com 2018]
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Motivation

Distinguishing Malware and Benignware

Malware detection method:

Signature-based analysis
Dynamic analysis

To decrease the anti-virus performance overhead, previous works
propose to use Hardware Performance Counters (HPCs) to detect
malware.

HPCs have negligible performance overhead during information
extraction.

Can the information of HPC values be used for malware detection?
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Motivation

Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) are the hardware units that
count micro-architectural events:

cache misses/hits.
floating-point (fp) operations

Example 1:
def count to 100():

count = 0;
while (count ≤ 100):

count = count + 1;
encrypt file(file1, key);

Example 2:
def count to 100():

count = 0.2;
while (count ≤ 100.2):

count = count + 1.0;
encrypt file(random(), key);

More cache hits in Example 1 - encryption on the same file

More fp-operations in Example 2 - no fp-operations in the Example 1
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Motivation

Hardware Performance Counters (HPCs)

There are more than 130 micro-architectural events on Intel, but only
4 can be monitored at a time.

AMD has 6 counters that can be monitored at a time.

Previous works have not used time-multiplexing to monitor more
events.
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Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.
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Prior Works

Previous HPC malware detection system

Gather HPC 
while running the program

Train machine learning models
with HPC values

Test programs 
with machine learning models

Figure: General Workflow

These listed works apply a general workflow to use HPCs to detect
malware: [Demme 2013 ISCA] [Tang 2014 RAID]
[Ozsoy 2015 HPCA] [Khasawneh 2015 RAID] [Wang 2016 TACO]
[Kazdagli 2016 MICRO] [Singh 2017 AsiaCCS]
[Khasawneh 2017 MICRO]
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Prior Works

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines [Vincent 2013 ISPASS]

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations, insufficient validations
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Contribution

Contributions

We identify the unrealistic assumptions and the insufficient analysis
used in prior works.

We perform thorough experiments with a program count that exceeds
prior works by a factor of 2× ∼ 3×.

We compare the effects of the experimental settings (division of data)
on the quality of machine learning.

Finally, we make all code, data, and results of our project publicly
available.
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Experimental Setup

Our Experiment Workflow

  

Receive Job

Figure: Our workflow of benignware/malware experiments
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Experimental Setup

Our Experiment Workflow

  

Receive Job Sample HPC

Figure: Our workflow of benignware/malware experiments
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Our Experiment Workflow

  

Receive Job Sample HPC Run Program
(Malware/Benignware)

Run MonkeyBenignware that has a window

Figure: Our workflow of benignware/malware experiments
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Experimental Setup

Our Experiment Workflow

  

Receive Job Sample HPC Run Program
(Malware/Benignware)

Run Monkey

Reset Environment

Reload Partition

Kill All Spawned Processes

Malware

Benignware

Benignware that has a window

Figure: Our workflow of benignware/malware experiments
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Data Analysis Event Selection

Data Analysis - Event Selection

Previous works selected events based on “expert intuition”.

Without “expert intuition”, we found out that our quantitative
selected events have many overlapping events with previous works.

Table: Description of the Selected Events

Events Definition

0x04000 The number of accesses to the data cache for load and store references
0x03000 The number of CLFLUSH instructions executed
0x02B00 The number of System Management Interrupts (SMIs) received

0x02904 The number of Load operations dispatched to the Load-Store unit
0x02902 The number of Store operations dispatched to the Load-Store unit
0x02700 The number of CPUID instructions retired
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Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.

→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.
→ realistic
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Data Analysis Data Division

Data Analysis - Data Division

1

Figure: Data Division
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Data Analysis - Data Division
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Figure: Data Division
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Data Analysis - Data Division
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Data Analysis Our Findings

Data Analysis - Our Findings

High False Positives (FP)

Our detection False Discovery Rate (FDR) is 15%. FDR = FP
FP+TP

If we deploy this system to a Windows 7 file system, among 1,323
executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

We cross-validate our models in both data division types.

TTA2 results in 1.762× larger STD than the results from TTA1.
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Data Analysis Our Findings

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines

Few data samples
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Biased Data Analysis

Unrealistic data division

No quantitative selection of events
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Malware Example

An Example - Ransomware

During our experiments, we observed the variations in HPC values.

We write a simple malware that can hide from the HPC malware
detection, by infusing a malware (ransomeware) into benignware
(Notepad++).

We train traces from the original ransomware (with injected into
Notepad++) and benignware in our detection system. The detection
system fails to detect our malware.
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Summary

Summary

We identify the unrealistic assumptions and the insufficient analysis
used in prior work.

We provide guidelines for future works in malware detection:

Run experiments on bare-metal machines (no VM, DBI) with more
program samples
Select events based on quantitative analysis
Divide training and testing dataset based on program samples (TTA2)
Perform cross-validations

We open-source our work in the following link:
https://github.com/bu-icsg/Hardware_

Performance_Counters_Can_Detect_Malware_

Myth_or_Fact
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Summary

Backup
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Summary

Principal Component Analysis

In order to avoid curse of dimensions, we reduce the feature dimension by
applying Principal Component Analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Features

Event: The number of Load operations dispatched to the Load-Store unit
Benignware (red box): creative1, Malware (blue box): 37375106291becca8427766e24f54887
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Figure: Distributions of sampled values before (a) & after (b) the reduction of
dimensions.
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Summary

Reduction of Approximation Error

We only use the main components during PCA, which introduces
approximation error. Thus, we minimize the approximation error by
selecting the events with minimum approximation error.

A = VλV−1 ≈ V ′λV ′−1 (1)

AV =
m∑
i=1

v (i)λ(i) +
n∑

i=m+1

v (i)λ(i) (2)

=
m∑
i=1

v (i)λ(i) + ε(αvλ) (3)
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Summary

Reduction of Approximation Error

1 2 3 4 5
m

0.000
0.005
0.010
0.015
0.020
0.025

α

Figure: Error Bound vs the Number of Eigenvetors Plot: when choosing different
number of eigenvectors for reduction in dimensions, the error bound α changes
according to m eigenvectors.
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Summary

Roc curves
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Figure: Receiver Operating Characteristic (ROC) curve of 5 models.
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Summary

Table: Detection Rates with TTA1 and TTA2: Red means the value is less than
50% and bold means that the value is more than 90%

TTA1 TTA2
Models Precision[%] Recall[%] F1-Score[%] AUC[%] Precision[%] Recall[%] F1-Score[%] AUC[%]

Decision Tree 83.04 83.75 83.39 89.65 83.21 77.44 80.22 87.36
Naive Bayes 70.36 7.97 14.32 58.11 56.72 5.425 9.903 58.38
Neural Net 82.41 75.4 78.75 84.41 91.34 22.16 35.66 66.43
AdaBoost 78.61 71.73 75.01 80.57 75.78 65.6 70.32 77.96

Random Forest 86.4 83.34 84.84 91.84 84.36 78.44 81.29 89.94
Nearest Neighbors 84.84 82.37 83.59 89.26 82.7 77.88 80.22 86.98
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Distributions of Cross-validations
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Figure: Box plots of distributions of 10-fold cross-validation experiments using (a)
TTA1 and (b) TTA2.
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