
Can we reliably detect malware using Hardware
Performance Counters?

Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi,
Manuel Egele, Ajay Joshi

Email: {bobzhou, anmol.gupta1005, rasoulj, megele, joshi}@bu.edu

January 25, 2019

Page 1

Malware Explosion

Figure: Exponential Growth in Total Number of Malware[av-test.org 2017]

Page 2

Malware Explosion

Figure: the Damage of Malware [av-test.org 2017] [verdict.co.uk 2017]
[StrongArm.io][thehackernews.com 2018]

Page 3

Motivation

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 4

Motivation

Distinguishing Malware and Benignware

Malware detection method:

Signature-based analysis
Dynamic analysis

To decrease the anti-virus performance overhead, previous works
propose to use Hardware Performance Counters (HPCs) to detect
malware.

HPCs have negligible performance overhead during information
extraction.

Can the information of HPC values be used for malware detection?

Page 5

Motivation

Distinguishing Malware and Benignware

Malware detection method:

Signature-based analysis
Dynamic analysis

To decrease the anti-virus performance overhead, previous works
propose to use Hardware Performance Counters (HPCs) to detect
malware.

HPCs have negligible performance overhead during information
extraction.

Can the information of HPC values be used for malware detection?

Page 5

Motivation

Distinguishing Malware and Benignware

Malware detection method:

Signature-based analysis
Dynamic analysis

To decrease the anti-virus performance overhead, previous works
propose to use Hardware Performance Counters (HPCs) to detect
malware.

HPCs have negligible performance overhead during information
extraction.

Can the information of HPC values be used for malware detection?

Page 5

Motivation

Distinguishing Malware and Benignware

Malware detection method:

Signature-based analysis
Dynamic analysis

To decrease the anti-virus performance overhead, previous works
propose to use Hardware Performance Counters (HPCs) to detect
malware.

HPCs have negligible performance overhead during information
extraction.

Can the information of HPC values be used for malware detection?

Page 5

Motivation

Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) are the hardware units that
count micro-architectural events:

cache misses/hits.
floating-point (fp) operations

Example 1:
def count to 100():

count = 0;
while (count ≤ 100):

count = count + 1;
encrypt file(file1, key);

Example 2:
def count to 100():

count = 0.2;
while (count ≤ 100.2):

count = count + 1.0;
encrypt file(random(), key);

More cache hits in Example 1 - encryption on the same file

More fp-operations in Example 2 - no fp-operations in the Example 1

Page 6

Motivation

Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) are the hardware units that
count micro-architectural events:

cache misses/hits.
floating-point (fp) operations

Example 1:
def count to 100():

count = 0;
while (count ≤ 100):

count = count + 1;
encrypt file(file1, key);

Example 2:
def count to 100():

count = 0.2;
while (count ≤ 100.2):

count = count + 1.0;
encrypt file(random(), key);

More cache hits in Example 1 - encryption on the same file

More fp-operations in Example 2 - no fp-operations in the Example 1

Page 6

Motivation

Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) are the hardware units that
count micro-architectural events:

cache misses/hits.
floating-point (fp) operations

Example 1:
def count to 100():

count = 0;
while (count ≤ 100):

count = count + 1;
encrypt file(file1, key);

Example 2:
def count to 100():

count = 0.2;
while (count ≤ 100.2):

count = count + 1.0;
encrypt file(random(), key);

More cache hits in Example 1 - encryption on the same file

More fp-operations in Example 2 - no fp-operations in the Example 1

Page 6

Motivation

Hardware Performance Counters (HPCs)

There are more than 130 micro-architectural events on Intel, but only
4 can be monitored at a time.

AMD has 6 counters that can be monitored at a time.

Previous works have not used time-multiplexing to monitor more
events.

Page 7

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);

encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);

upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);

print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Motivation

Program Semantics

Example 3:
def save to keyvault():

key=generate key(seed);
encrypt file(file, key);
upload key to cloud(ip1, key);
print(”Encryption Completed.”);

Example 4:
def ransomeware():

key=generate key(seed);
encrypt file(file, key);
upload key to attacker(ip2, key);
print(”Where is my money?”);

HPC values do not distinguish between ip1 and ip2.

The difference between ransomware and crypto-programs
is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest
themselves in low-level hardware behaviors.

Page 8

Prior Works

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 9

Prior Works

Previous HPC malware detection system

Gather HPC
while running the program

Train machine learning models
with HPC values

Test programs
with machine learning models

Figure: General Workflow

These listed works apply a general workflow to use HPCs to detect
malware: [Demme 2013 ISCA] [Tang 2014 RAID]
[Ozsoy 2015 HPCA] [Khasawneh 2015 RAID] [Wang 2016 TACO]
[Kazdagli 2016 MICRO] [Singh 2017 AsiaCCS]
[Khasawneh 2017 MICRO]

Page 10

Prior Works

Previous HPC malware detection system

Gather HPC
while running the program

Train machine learning models
with HPC values

Test programs
with machine learning models

Figure: General Workflow

These listed works apply a general workflow to use HPCs to detect
malware: [Demme 2013 ISCA] [Tang 2014 RAID]
[Ozsoy 2015 HPCA] [Khasawneh 2015 RAID] [Wang 2016 TACO]
[Kazdagli 2016 MICRO] [Singh 2017 AsiaCCS]
[Khasawneh 2017 MICRO]

Page 10

Prior Works

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines [Vincent 2013 ISPASS]

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations, insufficient validations

Page 11

Prior Works

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines [Vincent 2013 ISPASS]

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations, insufficient validations

Page 11

Prior Works

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines [Vincent 2013 ISPASS]

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations, insufficient validations

Page 11

Contribution

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 12

Contribution

Contributions

We identify the unrealistic assumptions and the insufficient analysis
used in prior works.

We perform thorough experiments with a program count that exceeds
prior works by a factor of 2× ∼ 3×.

We compare the effects of the experimental settings (division of data)
on the quality of machine learning.

Finally, we make all code, data, and results of our project publicly
available.

Page 13

Experimental Setup

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 14

Experimental Setup

Our Experiment Workflow

Receive Job

Figure: Our workflow of benignware/malware experiments

Page 15

Experimental Setup

Our Experiment Workflow

Receive Job Sample HPC

Figure: Our workflow of benignware/malware experiments

Page 16

Experimental Setup

Our Experiment Workflow

Receive Job Sample HPC Run Program
(Malware/Benignware)

Run MonkeyBenignware that has a window

Figure: Our workflow of benignware/malware experiments

Page 17

Experimental Setup

Our Experiment Workflow

Receive Job Sample HPC Run Program
(Malware/Benignware)

Run Monkey

Reset Environment

Benignware that has a window

Figure: Our workflow of benignware/malware experiments

Page 18

Experimental Setup

Our Experiment Workflow

Receive Job Sample HPC Run Program
(Malware/Benignware)

Run Monkey

Reset Environment

Reload Partition

Kill All Spawned Processes

Malware

Benignware

Benignware that has a window

Figure: Our workflow of benignware/malware experiments

Page 19

Data Analysis

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 20

Data Analysis Event Selection

Data Analysis - Event Selection

Previous works selected events based on “expert intuition”.

Without “expert intuition”, we found out that our quantitative
selected events have many overlapping events with previous works.

Table: Description of the Selected Events

Events Definition

0x04000 The number of accesses to the data cache for load and store references
0x03000 The number of CLFLUSH instructions executed
0x02B00 The number of System Management Interrupts (SMIs) received

0x02904 The number of Load operations dispatched to the Load-Store unit
0x02902 The number of Store operations dispatched to the Load-Store unit
0x02700 The number of CPUID instructions retired

Page 21

Data Analysis Event Selection

Data Analysis - Event Selection

Previous works selected events based on “expert intuition”.

Without “expert intuition”, we found out that our quantitative
selected events have many overlapping events with previous works.

Table: Description of the Selected Events

Events Definition

0x04000 The number of accesses to the data cache for load and store references
0x03000 The number of CLFLUSH instructions executed
0x02B00 The number of System Management Interrupts (SMIs) received

0x02904 The number of Load operations dispatched to the Load-Store unit
0x02902 The number of Store operations dispatched to the Load-Store unit
0x02700 The number of CPUID instructions retired

Page 21

Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.

→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.
→ realistic

Page 22

Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.
→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.
→ realistic

Page 22

Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.
→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.

→ realistic

Page 22

Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.
→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.
→ realistic

Page 22

Data Analysis Data Division

Data Analysis - Data Division

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.
→ not realistic

TTA2: Testing on traces produced by the program from same
category/family.
→ realistic

Page 22

Data Analysis Data Division

Data Analysis - Data Division

1

Figure: Data Division

Page 23

Data Analysis Data Division

Data Analysis - Data Division

1

Figure: Data Division

Page 24

Data Analysis Data Division

Data Analysis - Data Division

1 2 3 4 5

TTA1

Figure: Data Division

Page 25

Data Analysis Data Division

Data Analysis - Data Division

1 2 3 4 5

TTA1

Figure: Data Division

Page 26

Data Analysis Data Division

Data Analysis - Data Division

1 2 3 4 5

TTA1

TTA2

Figure: Data Division

Page 27

Data Analysis Data Division

Data Analysis - Data Division

1 2 3 4 5

TTA1

TTA2

Figure: Data Division

Page 28

Data Analysis Our Findings

Data Analysis - Our Findings

High False Positives (FP)

Our detection False Discovery Rate (FDR) is 15%. FDR = FP
FP+TP

If we deploy this system to a Windows 7 file system, among 1,323
executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

We cross-validate our models in both data division types.

TTA2 results in 1.762× larger STD than the results from TTA1.

Page 29

Data Analysis Our Findings

Data Analysis - Our Findings

High False Positives (FP)

Our detection False Discovery Rate (FDR) is 15%. FDR = FP
FP+TP

If we deploy this system to a Windows 7 file system, among 1,323
executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

We cross-validate our models in both data division types.

TTA2 results in 1.762× larger STD than the results from TTA1.

Page 29

Data Analysis Our Findings

Data Analysis - Our Findings

High False Positives (FP)

Our detection False Discovery Rate (FDR) is 15%. FDR = FP
FP+TP

If we deploy this system to a Windows 7 file system, among 1,323
executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

We cross-validate our models in both data division types.

TTA2 results in 1.762× larger STD than the results from TTA1.

Page 29

Data Analysis Our Findings

Data Analysis - Our Findings

High False Positives (FP)

Our detection False Discovery Rate (FDR) is 15%. FDR = FP
FP+TP

If we deploy this system to a Windows 7 file system, among 1,323
executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

We cross-validate our models in both data division types.

TTA2 results in 1.762× larger STD than the results from TTA1.

Page 29

Data Analysis Our Findings

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations

Page 30

Data Analysis Our Findings

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in
malware detection?

Unrealistic Experimental Setup

Virtual Machines

Few data samples

Dynamic binary instrumentation

Biased Data Analysis

Unrealistic data division

No quantitative selection of events

No cross-validations

Page 31

Malware Example

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 32

Malware Example

An Example - Ransomware

During our experiments, we observed the variations in HPC values.

We write a simple malware that can hide from the HPC malware
detection, by infusing a malware (ransomeware) into benignware
(Notepad++).

We train traces from the original ransomware (with injected into
Notepad++) and benignware in our detection system. The detection
system fails to detect our malware.

Page 33

Malware Example

An Example - Ransomware

During our experiments, we observed the variations in HPC values.

We write a simple malware that can hide from the HPC malware
detection,

by infusing a malware (ransomeware) into benignware
(Notepad++).

We train traces from the original ransomware (with injected into
Notepad++) and benignware in our detection system. The detection
system fails to detect our malware.

Page 33

Malware Example

An Example - Ransomware

During our experiments, we observed the variations in HPC values.

We write a simple malware that can hide from the HPC malware
detection, by infusing a malware (ransomeware) into benignware
(Notepad++).

We train traces from the original ransomware (with injected into
Notepad++) and benignware in our detection system. The detection
system fails to detect our malware.

Page 33

Summary

Overview

1 Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis
Event Selection
Data Division
Our Findings

6 Malware Example

7 Summary

Page 34

Summary

Summary

We identify the unrealistic assumptions and the insufficient analysis
used in prior work.

We provide guidelines for future works in malware detection:

Run experiments on bare-metal machines (no VM, DBI) with more
program samples
Select events based on quantitative analysis
Divide training and testing dataset based on program samples (TTA2)
Perform cross-validations

We open-source our work in the following link:
https://github.com/bu-icsg/Hardware_

Performance_Counters_Can_Detect_Malware_

Myth_or_Fact

Page 35

https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact
https://github.com/bu-icsg/Hardware_Performance_Counters_Can_Detect_Malware_Myth_or_Fact

Summary

Backup

Page 36

Summary

Principal Component Analysis

In order to avoid curse of dimensions, we reduce the feature dimension by
applying Principal Component Analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Features

Event: The number of Load operations dispatched to the Load-Store unit
Benignware (red box): creative1, Malware (blue box): 37375106291becca8427766e24f54887

(a)

0.00e+00

5.00e+13

V
al

ue
s

of
 e

xa
m

pl
es

1 2
PCA

Features
(b)

0.00e+00

2.00e+13

PC
A

 v
al

ue
s

Figure: Distributions of sampled values before (a) & after (b) the reduction of
dimensions.

Page 37

Summary

Reduction of Approximation Error

We only use the main components during PCA, which introduces
approximation error. Thus, we minimize the approximation error by
selecting the events with minimum approximation error.

A = VλV−1 ≈ V ′λV ′−1 (1)

AV =
m∑
i=1

v (i)λ(i) +
n∑

i=m+1

v (i)λ(i) (2)

=
m∑
i=1

v (i)λ(i) + ε(αvλ) (3)

Page 38

Summary

Reduction of Approximation Error

1 2 3 4 5
m

0.000
0.005
0.010
0.015
0.020
0.025

α

Figure: Error Bound vs the Number of Eigenvetors Plot: when choosing different
number of eigenvectors for reduction in dimensions, the error bound α changes
according to m eigenvectors.

Page 39

Summary

Roc curves

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
Po

si
tiv

e
R

at
e

ROC Curve

Decision Tree: 89.65%

Neural Net: 84.41%

AdaBoost: 80.57%

Random Forest: 91.84%

Nearest Neighbors: 89.26%

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
Po

si
tiv

e
R

at
e

ROC Curve

Decision Tree: 87.36%

Neural Net: 66.43%

AdaBoost: 77.96%

Random Forest: 89.94%

Nearest Neighbors: 86.98%

(b)

Figure: Receiver Operating Characteristic (ROC) curve of 5 models.

Page 40

Summary

Table: Detection Rates with TTA1 and TTA2: Red means the value is less than
50% and bold means that the value is more than 90%

TTA1 TTA2
Models Precision[%] Recall[%] F1-Score[%] AUC[%] Precision[%] Recall[%] F1-Score[%] AUC[%]

Decision Tree 83.04 83.75 83.39 89.65 83.21 77.44 80.22 87.36
Naive Bayes 70.36 7.97 14.32 58.11 56.72 5.425 9.903 58.38
Neural Net 82.41 75.4 78.75 84.41 91.34 22.16 35.66 66.43
AdaBoost 78.61 71.73 75.01 80.57 75.78 65.6 70.32 77.96

Random Forest 86.4 83.34 84.84 91.84 84.36 78.44 81.29 89.94
Nearest Neighbors 84.84 82.37 83.59 89.26 82.7 77.88 80.22 86.98

Page 41

Summary

Distributions of Cross-validations

Prec Rec F1
AUC

20

40

60

80

100

Pe
rc

en
ta

ge
[%

]

Decision
Tree

Prec Rec F1
AUC

Naive
Bayes

Prec Rec F1
AUC

Neural
Net

Prec Rec F1
AUC

AdaBoost

Prec Rec F1
AUC

Random
Forest

Prec Rec F1
AUC

Nearest
Neighbors

(a)

Prec Rec F1
AUC

20

40

60

80

100

Pe
rc

en
ta

ge
[%

]

Decision
Tree

Prec Rec F1
AUC

Naive
Bayes

Prec Rec F1
AUC

Neural
Net

Prec Rec F1
AUC

AdaBoost

Prec Rec F1
AUC

Random
Forest

Prec Rec F1
AUC

Nearest
Neighbors

(b)

Figure: Box plots of distributions of 10-fold cross-validation experiments using (a)
TTA1 and (b) TTA2.

Page 42

	Motivation
	Prior Works
	Contribution
	Experimental Setup
	Data Analysis
	Event Selection
	Data Division
	Our Findings

	Malware Example
	Summary

