Can we reliably detect malware using Hardware Performance Counters?

Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, Ajay Joshi Email: {bobzhou, anmol.gupta1005, rasoulj, megele, joshi}@bu.edu

January 25, 2019

Malware Explosion

Figure: Exponential Growth in Total Number of Malware[av-test.org 2017]

Malware Explosion

Figure: the Damage of Malware [av-test.org 2017] [verdict.co.uk 2017] [StrongArm.io][thehackernews.com 2018]

Overview

Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis

- Event Selection
- Data Division
- Our Findings
- 6 Malware Example

Summary

э

イロト イヨト イヨト

LINIVER

イロト 不得 トイヨト イヨト

э

- Signature-based analysis
- Dynamic analysis

・ロト ・ ア・ ・ ヨト ・ ヨト

-

- Signature-based analysis
- Dynamic analysis
- To decrease the anti-virus performance overhead, previous works propose to use Hardware Performance Counters (HPCs) to detect malware.

- Signature-based analysis
- Dynamic analysis
- To decrease the anti-virus performance overhead, previous works propose to use Hardware Performance Counters (HPCs) to detect malware.
- HPCs have negligible performance overhead during information extraction.

- Signature-based analysis
- Dynamic analysis
- To decrease the anti-virus performance overhead, previous works propose to use Hardware Performance Counters (HPCs) to detect malware.
- HPCs have negligible performance overhead during information extraction.
- Can the information of HPC values be used for malware detection?

• *Hardware Performance Counters (HPCs)* are the hardware units that count *micro-architectural events*:

BOSTON

- cache misses/hits.
- floating-point (fp) operations

• *Hardware Performance Counters (HPCs)* are the hardware units that count *micro-architectural events*:

- cache misses/hits.
- floating-point (fp) operations

```
Example 2:

def count_to_100():

    count = 0.2;

    while (count \leq 100.2):

        count = count + 1.0;

        encrypt_file(random(), key);
```

BOSTON

• *Hardware Performance Counters (HPCs)* are the hardware units that count *micro-architectural events*:

- cache misses/hits.
- floating-point (fp) operations

- More cache hits in Example 1 encryption on the same file
- More fp-operations in Example 2 no fp-operations in the Example 1

BOSTON

(日)

- There are more than 130 micro-architectural events on Intel, but only 4 can be monitored at a time.
- AMD has 6 counters that can be monitored at a time.
- Previous works **have not** used time-multiplexing to monitor more events.

Example 3: def save_to_keyvault():

Example 3: def save_to_keyvault(): key=generate_key(seed);

<ロ> (四) (四) (三) (三) (三)

LINIVER

・ロト ・四ト ・ヨト ・ヨト

э

Program Semantics

Example 3: def save_to_keyvault(): key=generate_key(seed); encrypt_file(file, key);

Example 3: def save_to_keyvault(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_cloud(ip1, key);

э

イロト 不同ト 不同ト 不同ト

```
Example 3:
def save_to_keyvault():
    key=generate_key(seed);
    encrypt_file(file, key);
    upload_key_to_cloud(ip1, key);
    print("Encryption Completed.");
```


э

・ロト ・四ト ・ヨト ・ヨト

Example 4: def ransomeware(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_attacker(ip2, key); print("Where is my money?");

・ロト ・四ト ・ヨト ・ヨト

BOSTON

Example 3: def save_to_keyvault(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_cloud(ip1, key); print("Encryption Completed."); Example 4: def ransomeware(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_attacker(ip2, key); print("Where is my money?");

イロト 不得 トイヨト イヨト

• HPC values do not distinguish between ip1 and ip2.

Example 3: def save_to_keyvault(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_cloud(ip1, key); print("Encryption Completed."); Example 4: def ransomeware(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_attacker(ip2, key); print("Where is my money?");

• HPC values do not distinguish between ip1 and ip2.

• The difference between ransomware and crypto-programs is who holds the key (user in Example 3 and attacker in Example 4).

Example 4: def ransomeware(): key=generate_key(seed); encrypt_file(file, key); upload_key_to_attacker(ip2, key); print("Where is my money?");

BOSTON

• HPC values do not distinguish between ip1 and ip2.

• The difference between ransomware and crypto-programs is who holds the key (user in Example 3 and attacker in Example 4).

It is counter-intuitive that high-level program behaviors would manifest themselves in low-level hardware behaviors.

Overview

BOSTON UNIVERSITY

э

イロト イヨト イヨト

Motivatior

- 3 Contribution
- 4 Experimental Setup
- 5 Data Analysis
 - Event Selection
 - Data Division
 - Our Findings
- 6 Malware Example
 - Summary

Previous HPC malware detection system

BOSTON

UNIVERSITY

3

イロト 不得 トイヨト イヨト

Figure: General Workflow

Previous HPC malware detection system

BOSTON

Figure: General Workflow

These listed works apply a general workflow to use HPCs to detect malware: [Demme 2013 ISCA] [Tang 2014 RAID] [Ozsoy 2015 HPCA] [Khasawneh 2015 RAID] [Wang 2016 TACO] [Kazdagli 2016 MICRO] [Singh 2017 AsiaCCS] [Khasawneh 2017 MICRO]

UNIVERSIT

(日)

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in malware detection?

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in malware detection?

- Unrealistic Experimental Setup
 - Virtual Machines [Vincent 2013 ISPASS]
 - Few data samples
 - Dynamic binary instrumentation

(人間) (人) (人) (人) (人) (人)

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in malware detection?

Unrealistic Experimental Setup

- Virtual Machines [Vincent 2013 ISPASS]
- Few data samples
- Dynamic binary instrumentation

Biased Data Analysis

- Unrealistic data division
- No quantitative selection of events
- No cross-validations, insufficient validations

Overview

Motivation

2 Prior Works

3 Contribution

Experimental Setup

5 Data Analysis

- Event Selection
- Data Division
- Our Findings
- 6 Malware Example

Summary

э

イロト イヨト イヨト

Contributions

イロト 不得 とくき とくきとうき

- We identify the unrealistic assumptions and the insufficient analysis used in prior works.
- We perform thorough experiments with a program count that exceeds prior works by a factor of $2 \times \sim 3 \times$.
- We compare the effects of the experimental settings (division of data) on the quality of machine learning.
- Finally, we make all code, data, and results of our project publicly available.

UNIVERSITY

э

イロト イヨト イヨト

Overview

Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

- 5 Data Analysis
 - Event Selection
 - Data Division
 - Our Findings
- 6 Malware Example
 - Summary

Figure: Our workflow of benignware/malware experiments

Figure: Our workflow of benignware/malware experiments

Figure: Our workflow of benignware/malware experiments

BOSTON

UNIVERSITY

・ロト ・ ア・ ・ ヨト ・ ヨト

3

Figure: Our workflow of benignware/malware experiments

BOSTON

UNIVERSITY

Figure: Our workflow of benignware/malware experiments

Overview

2 Prior Works

3 Contribution

4 Experimental Setup

- Event Selection
- Data Division
- Our Findings
- 6 Malware Example

Event Selection

Data Analysis - Event Selection

- Previous works selected events based on "expert intuition".
- Without "expert intuition", we found out that our quantitative selected events have many overlapping events with previous works.

Data Analysis - Event Selection

- Previous works selected events based on "expert intuition".
- Without "expert intuition", we found out that our quantitative selected events have many overlapping events with previous works.

Table: Description of the Selected Events

Events	Definition
0x04000	The number of accesses to the data cache for load and store references
0x03000	The number of CLFLUSH instructions executed
0x02B00	The number of System Management Interrupts (SMIs) received
0x02904	The number of Load operations dispatched to the Load-Store unit
0x02902	The number of Store operations dispatched to the Load-Store unit
0x02700	The number of CPUID instructions retired

Data Analysis - Data Division

Training-testing Approach (TTA)

• TTA1: Testing on traces produced by the same program sample.

Data Analysis - Data Division

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Training-testing Approach (TTA)

TTA1: Testing on traces produced by the same program sample.
 → not realistic

Data Analysis - Data Division

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Training-testing Approach (TTA)

- TTA1: Testing on traces produced by the same program sample.
 → not realistic
- TTA2: Testing on traces produced by the program from same category/family.

Data Analysis - Data Division

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Training-testing Approach (TTA)

- TTA1: Testing on traces produced by the same program sample.
 → not realistic
- TTA2: Testing on traces produced by the program from same category/family.

 \rightarrow realistic

Data Analysis - Data Division

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Training-testing Approach (TTA)

- TTA1: Testing on traces produced by the same program sample.
 → not realistic
- TTA2: Testing on traces produced by the program from same category/family.

 \rightarrow realistic

Data Analysis - Data Division

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1

Data Analysis - Data Division

1

Data Analysis - Data Division

Data Analysis - Data Division

Data Analysis - Data Division

Data Analysis - Data Division

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Data Analysis - Our Findings

High False Positives (FP)

• Our detection False Discovery Rate (FDR) is 15%. $FDR = \frac{FP}{FP+TP}$

Data Analysis - Our Findings

イロト 不得 トイヨト イヨト

High False Positives (FP)

- Our detection False Discovery Rate (FDR) is 15%. $FDR = \frac{FP}{FP+TP}$
- If we deploy this system to a Windows 7 file system, among 1,323 executables, 198 would be flagged as malware.

BOSTON

Data Analysis - Our Findings

- Our detection False Discovery Rate (FDR) is 15%. $FDR = \frac{FP}{FP+TP}$
- If we deploy this system to a Windows 7 file system, among 1,323 executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

• We cross-validate our models in both data division types.

BOSTON

・ロト ・ ア・ ・ ヨト ・ ヨト

Data Analysis - Our Findings

- Our detection False Discovery Rate (FDR) is 15%. $FDR = \frac{FP}{FP+TP}$
- If we deploy this system to a Windows 7 file system, among 1,323 executables, 198 would be flagged as malware.

Large Standard Deviation (STD)

- We cross-validate our models in both data division types.
- TTA2 results in $1.762 \times$ larger STD than the results from TTA1.

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in malware detection?

- Unrealistic Experimental Setup
 - Virtual Machines
 - Few data samples
 - Dynamic binary instrumentation

Biased Data Analysis

- Unrealistic data division
- No quantitative selection of events
- No cross-validations

BOSTON

-

イロト 不同ト 不同ト 不同ト

Experimental & Analytical Drawbacks

Why do those works draw the conclusion that HPC can be used in malware detection?

- Unrealistic Experimental Setup
 - Virtual Machines
 - Few data samples
 - Dynamic binary instrumentation

Biased Data Analysis

- Unrealistic data division
- No quantitative selection of events
- No cross-validations

Overview

Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis

- Event Selection
- Data Division
- Our Findings

Summary

э

・ロト ・個ト ・モト ・モト

An Example - Ransomware

• During our experiments, we observed the variations in HPC values.

An Example - Ransomware

・ロト ・同ト ・ヨト ・ヨト 一日

- During our experiments, we observed the variations in HPC values.
- We write a simple malware that can hide from the HPC malware detection,

An Example - Ransomware

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

- During our experiments, we observed the variations in HPC values.
- We write a simple malware that can hide from the HPC malware detection, by infusing a malware (ransomeware) into benignware (Notepad++).
- We train traces from the original ransomware (with injected into Notepad++) and benignware in our detection system. The detection system fails to detect our malware.

Overview

Motivation

2 Prior Works

3 Contribution

4 Experimental Setup

5 Data Analysis

- Event Selection
- Data Division
- Our Findings
- 6 Malware Example

э

イロト イヨト イヨト

Summary

Summary

- We identify the unrealistic assumptions and the insufficient analysis used in prior work.
- We provide guidelines for future works in malware detection:
 - Run experiments on bare-metal machines (no VM, DBI) with more program samples
 - Select events based on quantitative analysis
 - Divide training and testing dataset based on program samples (TTA2)
 - Perform cross-validations
- We open-source our work in the following link: https://github.com/bu-icsg/Hardware_ Performance_Counters_Can_Detect_Malware_ Myth_or_Fact

Backup

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Principal Component Analysis

BOS

• • • • •

Figure: Distributions of sampled values before (a) & after (b) the reduction of dimensions.

Reduction of Approximation Error

We only use the main components during PCA, which introduces approximation error. Thus, we minimize the approximation error by selecting the events with minimum approximation error.

$$A = V\lambda V^{-1} \approx V'\lambda V'^{-1} \tag{1}$$

BOSTON

$$AV = \sum_{i=1}^{m} v^{(i)} \lambda^{(i)} + \sum_{i=m+1}^{n} v^{(i)} \lambda^{(i)}$$
(2)
$$= \sum_{i=1}^{m} v^{(i)} \lambda^{(i)} + \epsilon(\alpha v \lambda)$$
(3)

・ロン ・ 「ア・ ・ ヨン・ ・ ヨン・ ・ ヨ

Reduction of Approximation Error

BOSTON

Figure: Error Bound vs the Number of Eigenvetors Plot: when choosing different number of eigenvectors for reduction in dimensions, the error bound α changes according to *m* eigenvectors.

Summary

Roc curves

э

・ロト ・四ト ・モト ・モト

Figure: Receiver Operating Characteristic (ROC) curve of 5 models.

Table: Detection Rates with TTA1 and TTA2: Red means the value is less than 50% and **bold** means that the value is more than 90%

	TTA1				TTA2			
Models	Precision[%]	Recall[%]	F1-Score[%]	AUC[%]	Precision[%]	Recall[%]	F1-Score[%]	AUC[%]
Decision Tree	83.04	83.75	83.39	89.65	83.21	77.44	80.22	87.36
Naive Bayes	70.36	7.97	14.32	58.11	56.72	5.425	9.903	58.38
Neural Net	82.41	75.4	78.75	84.41	91.34	22.16	35.66	66.43
AdaBoost	78.61	71.73	75.01	80.57	75.78	65.6	70.32	77.96
Random Forest	86.4	83.34	84.84	91.84	84.36	78.44	81.29	89.94
Nearest Neighbors	84.84	82.37	83.59	89.26	82.7	77.88	80.22	86.98

Summary

Distributions of Cross-validations

Figure: Box plots of distributions of 10-fold cross-validation experiments using (a) Table 47A1 and (b) TTA2.