

Temperature and Process Variation–Aware Wavelength Selection in Photonic NoCs

Boston Area Computer Architecture Workshop, 2019

Aditya Narayan*, Yvain Thonnart+, Pascal Vivet+, César Fuguet Tortolero+, Ayse K. Coskun* *Boston University +CEA Leti, France

This work was partly funded by CARNOT institute, Grant ANR-10-AIRT-05 and NSF CCF-1716352

Communication bottleneck in manycore systems

Thermal and process variation sensitivity of MRRs

Thermal variation (TV) effect Due to TV, refractive index of Si changes

Process variation (PV) effect

Krishnamoorthy et al., IEEE Photonics Journal 2011

$\Delta\lambda \sim 1 nm/nm^* thickness$

PNoC power concerns

To achieve a goal of **50GFLOPs/W** for exascale computing, we need data movement energy to be **< 0.1pJ/bit**

PNoC power increases with the number of activated laser wavelengths ($\lambda_{\rm act}$) in the system

Minimize λ_{act}

Contribution of wavelength selection (WAVES)

> Identify and activate λ_{min} for an application which provides minimal loss in performance

Cross-layer simulation framework to model the system performance and PNoC power (laser, electronics and heating)

 \rightarrow We explore the optimizations of PNoC power arising from the device-level MRR locking under different system-level constraints

POPSTAR: 2.5D manycore system with PNoCs

POPSTAR → Processors On Photonic Silicon inTerposer ARchitecture

 \geq

Motivation for wavelength selection (WAVES)

- > PNoC power increases with number of activated laser wavelengths (λ_{act})
- System performance saturates at a λ_{min} < λ_{tot}, which is dependent on application's bandwidth requirement

Accounting for thermal and process variations

Simulation framework

Benchmarks

- PARSEC: swaptions, canneal, blackscholes
- SPLASH-2: cholesky, barnes, lu.cont

Each application executed for 10B instructions in the ROI

Average power savings for different configurations

Configuration	Setting	1%	L_{thr} 5%	10%	
Applications	high_comm low_comm	8% 38%	21% 56%	26% 61%	Increased power savings
DVFS settings	high_perf low_perf	19% 26%	34% 41%	39% 45%	Increased power savings
Thread counts	24 threads 48 threads 72 threads 96 threads	28% 18% 26% 18%	48% 37% 34% 31%	54% 45% 36% 33%	Power savings decreases
Average		23%	38%	42%	_

 L_{thr} : Performance loss threshold set compared to $\lambda_{act} = \lambda_{tot}$

Conclusion and current directions

WAVES achieves 23% (resp. 38%, 42%) average PNoC power savings with only 1% (resp. 5%, 10%) system performance loss.

Application's BW needs are highly dynamic

- Dynamic wavelength selection policy
- Proactively activate λ_{min} for each interval based on the PNoC activity

The full version of this paper will appear in *Design, Automation and Test in Europe (DATE),* Mar. 2019