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Motivation

Deep Learning is Popular!

Achieves high accuracy!

Solves complex problems!
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Motivation

Training of Deep Neural
Networks is Time Consuming!

Efficient hardware and
software are needed

GPU and Multi-GPU System
accelerate training
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Objective

Understand the Characteristics of DNN Workloads

Training of DNNs

Compute– and communication–intensiveness

Identify the Factors Affecting the Training of DNNs

Hardware-level limitations

Software-level limitations
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Background: DNN

What is a DNN?

Multiple layers of neurons

Two neighboring layers
connected via weights

Hidden Layer

Input 
Layer

Output Layer

Neuron
Weigths

Fully Connected

Feed
Forward 

Weights
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Background: Training Stages of a DNN

Forward Propagation (FP)

Hidden Layer

Input 
Layer

Output Layer

CO

CO = Calculated Output

Backward Propagation
(BP)

Hidden Layer

Input 
Layer

Output Layer

EO~CO

GradientsGradients

EO = Expected Output

Weight Update (WU)
NW =OW + α× f(G)
NW→ New Weight
OW→ Old Weight
α→ Constant
f(G)→ Averaged Gradients

Metric Evaluation (ME)
Forward propagation
Simple arithmetic
operation
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Background: Multi-GPU DNN Training

SGD Algorithm

CPU

GPU 0

GPU 1

GPU 2

GPU 3

Sending 
Training Data
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SGD Algorithm
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Background: Inter-GPU Communication

Peer-to-Peer (P2P) Memcpy

P2P Direct Transfer

NVIDIA Collective Communication Library (NCCL)

Broadcast and AllReduce

P2P direct transfer

Saiful A. Mojumder BARC 2019 8/27



Introduction
Methodology

Evaluation
Conclusion

Motivation
Objective
Background

Background: Inter-GPU Communication

Peer-to-Peer (P2P) Memcpy P2P Direct Transfer

NVIDIA Collective Communication Library (NCCL)

Broadcast and AllReduce

P2P direct transfer

Saiful A. Mojumder BARC 2019 8/27



Introduction
Methodology

Evaluation
Conclusion

Motivation
Objective
Background

Background: Inter-GPU Communication

Peer-to-Peer (P2P) Memcpy P2P Direct Transfer

NVIDIA Collective Communication Library (NCCL)

Broadcast and AllReduce

P2P direct transfer

Saiful A. Mojumder BARC 2019 8/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Evaluation Platform

DGX-1 System with 8 Tesla
V100 GPUs

Asymmetric interconnect

Lack of direct NVLink
connectivity between all
GPUs

PCIe or Two-hop
communication

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Saiful A. Mojumder BARC 2019 9/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Evaluation Platform

DGX-1 System with 8 Tesla
V100 GPUs

Asymmetric interconnect

Lack of direct NVLink
connectivity between all
GPUs

PCIe or Two-hop
communication

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Path 1

Saiful A. Mojumder BARC 2019 9/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Evaluation Platform

DGX-1 System with 8 Tesla
V100 GPUs

Asymmetric interconnect

Lack of direct NVLink
connectivity between all
GPUs

PCIe or Two-hop
communication

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Path 2

Saiful A. Mojumder BARC 2019 9/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Evaluation Platform

DGX-1 System with 8 Tesla
V100 GPUs

Asymmetric interconnect

Lack of direct NVLink
connectivity between all
GPUs

PCIe or Two-hop
communication

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Path 3

Saiful A. Mojumder BARC 2019 9/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Evaluation Platform

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Path 2

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path

Path 3

Saiful A. Mojumder BARC 2019 10/27



Introduction
Methodology

Evaluation
Conclusion

Evaluation Platform
Workloads and Datasets

Methodology: Workloads and Datasets

DNNs

5 different DNNs: LeNet, AlexNet, GoogLeNet, Inception-v3,
and ResNet

We perform training for one epoch

Network Layers
Conv
Layers

Incep
Layers

FC
Layers

Weights

LeNet 5 2 0 2 60K
AlexNet 8 5 0 3 60M
GoogLeNet 22 3 9 1 4M
Inception-v3 48 7 11 1 24M
ResNet 110 107 0 1 55M
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Methodology: Workloads and Datasets

Scaling

Strong Scaling

Increased GPU count
Fixed dataset

Weak Scaling

Increased GPU count
Increased dataset

Dataset

A subset of images from the Imagenet dataset

Strong scaling– 256K images

Weak scaling– 256K, 512K, 1M and 2M images for 1, 2, 4,
and 8 GPUs, respectively

Batch sizes– 16, 32, and 64
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Training Time
Breakdown of Training Time
Memory usage Analysis

Questions We Address

Do the workloads scale as GPU count increases?

Does P2P always perform worse than NCCL?

What is the impact of network size on training time?

What is the impact of batch size on training time?

How do different stages in the training process scale with
GPU count, batch size and network size?

What is the impact of GPU memory on training?

How does weak scaling correlate with strong scaling?
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Do the Workloads Scale with GPU Count?

Not linearly!

How well do they scale?
Depends!

DNN
Communication Method
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Do the Workloads Scale with GPU Count?

LeNet: Batch Size of 16

P2P: 1.62×, 2.37×, and 3.36× for 2, 4, and
8 GPUs, respectively

NCCL: 1.56×, 2.27×, and 2.77× for 2, 4,
and 8 GPUs, respectively

LeNet Does Not Scale Well!

Why? Small number of layers!
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Does NCCL Always Outperform P2P?

LeNet: Batch Size of 16

P2P: 1.62×, 2.37×, and 3.36× for 2, 4, and
8 GPUs, respectively

NCCL: 1.56×, 2.27×, and 2.77× for 2, 4,
and 8 GPUs, respectively

LeNet Does Not Scale Well!

Why? Small number of layers!

P2P Outperforms NCCL!

Why? NCCL overhead!
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What is the Impact of Network Size on Training Time?

GoogLeNet, Inception-v3 and ResNet:
Batch size of 16

P2P: <1.5×, <2.3×, <3× for 2,
4, and 8 GPUs, respectively

NCCL: <1.8×, <2.9×, <4.4×
for 2, 4, and 8 GPUs, respectively

Scale Better Than LeNet!

Why? Significantly larger!

NCCL Outperforms P2P!

Why? Amortization of Overhead!

16 32 64

(e)

0

50

100

150

200

250

ResNet with P2P

16 32 64

(i)

0

50

100

150

200

GoogLeNet with P2P

16 32 64

(k)

0

100

200

300

400

500

Inception-V3 with P2P

16 32 64

(f)

0

50

100

150

200

250

ResNet with NCCL

16 32 64

(j)

0

50

100

150

200

GoogLeNet with NCCL

16 32 64

(l)

0

100

200

300

400

500

Inception-V3 with NCCL

Batch Size

T
ot

al
 T

ra
in

in
g 

tim
e 

(s
)

Saiful A. Mojumder BARC 2019 17/27



Introduction
Methodology

Evaluation
Conclusion

Training Time
Breakdown of Training Time
Memory usage Analysis

How Much is the NCCL Overhead?

Measurement

From 16% to 32% additional overhead for
NCCL compared to P2P

Smaller workload → More overhead

Source of NCCL Overhead

Different source codes from P2P

Different data transfer mechanism from
P2P

Different CUDA API from P2P

Network Batch (%) NCCL
Size Overhead

LeNet 16 16.4
32 24
64 26.7

AlexNet 16 21.8
32 21.8
64 31.8

ResNet 16 20.1
32 22.9
64 19.3

GoogLeNet 16 18.7
32 17.5
64 16.2

Inception-v3 16 16.9
32 19.4
64 18.9
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What is the Impact of Batch Size on Training Time?

For Both P2P and NCCL

Linear reduction in training time!

True for all GPU counts!

Why?

Fewer batches per GPU
More computation per batch
Fewer data transfers
Constant amount of data per batch
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How Do Different Stages in the Training Process Scale?

FP+BP and WU Breakdown

FP+BP

Compute-intensive
Only computation and no GPU-to-GPU data transfer

WU

Communication-intensive
Transfer of gradients and weights
Negligible amount of computation
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What Is the Impact of GPU Count on FP+BP and WU?
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GPUs, Batch Size

Impact on LeNet and AlexNet

GPU count 1 → 2: >2× improvement in FP+BP time

GPU count 2 → 4→ 8: Non-linear decrease in the FP+BP
time

Why?
Low GPU compute utilization!

∼Linear decrease in WU time!
Why?

Decrease in batches each GPU processes.
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What Is the Impact of Network Size on FP+BP and WU?
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GPUs, Batch Size

Impact on Larger Workloads

Near linear speedup of FP+BP stages
Why?

Increased GPU compute utilization!

Better speedup in WU!
Why?

More weights per layer
Better NVLink BW utilization!
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Memory Usage

≤5% difference between P2P and NCCL

GPU0 consumes additional memory!

Pre-training Memory Usage ≈ Memory for Network Model

Training Memory Usage ≈ Memory for Network Model +
Memory for outputs
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What Is the Impact of Batch Size and Network Size on
Memory Usage?

Impact of Batch Size

Negligible increase in pre-training memory usage

A limit on the maximum batch size

Inception-v3: No more than 64!
ResNet: No more than 128!

Impact of Network Size

Larger network → More memory
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Accelerating DNN Training
Summary

Accelerating DNN Training

Hardware-Level Improvements

More powerful GPUs!

More efficient interconnect network!

More memory capacity!

Software-Level Improvements

Reduction in overhead

Development of better scheduling mechanism

Improvement of high level frameworks (such as MXNet)

Efficient distribution of data

Improvement in algorithm
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Accelerating DNN Training
Summary

Summary

Contributions

Comparison between two different multi-GPU communication
methods for training DNNs

Breakdown of training time into computation– and
communication–intensive portion

Demonstration of the impact of GPU memory

Evaluation of strong and weak scaling

Guidelines for designing future hardware and software
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Methodology: Framework and Tools

Framework and Libraries

NVIDIA container image of MXNet, release 18.04

CUDA 9.0.176

cuBLAS 9.0.333

NCCL 2.1.15

Profiler and Tools

nvprof

nvidia-smi

Saiful A. Mojumder BARC 2019 1/10



Evaluation: P2P vs. NCCL

Average Run Time
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P2P vs. NCCL: Impact of GPU Count

AlexNet: Batch Size of 16

Achieves speedup similar to
LeNet!

Why?
Still small number of
layers (5 convolution
layers)!

16 32 64

(a)

0

5

10

15

20

LeNet with P2P

16 32 64

(c)

0

5

10

15

20

25

30

AlexNet with P2P

16 32 64

(b)

0

5

10

15

20

LeNet with NCCL

16 32 64

(d)

0

5

10

15

20

25

30

AlexNet with NCCL

Batch Size

T
ot

al
 T

ra
in

in
g 

tim
e 

(s
)

Saiful A. Mojumder BARC 2019 3/10



FP+BP and WU Breakdown: Batch Size

Increase in Batch Size

More computation per batch

Fewer synchronizations

Less time needed for WU
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Memory Usage
Network Batch Pre-training Training Training Additional Mem. Usage Increase in Mem. Usage

Size GPUz (GB) GPU0 (GB) GPUx (GB) in GPU0 w.r.t. GPUx (%) w.r.t. the Batch Size of 16 (%)

LeNet 16 1.37 2.76 1.96 41.1 –
LeNet 32 1.38 2.84 2.04 39.4 3.0
LeNet 64 1.40 2.89 2.36 22.7 4.8

AlexNet 16 1.24 2.15 1.55 39.2 –
AlexNet 32 1.25 2.36 1.76 34.5 9.9
AlexNet 64 1.27 2.97 2.37 25.6 38.2

ResNet 16 1.08 3.62 3.29 10.1 –
ResNet 32 1.11 5.66 5.63 6.2 56.1
ResNet 64 1.13 9.48 9.15 3.5 161.5

GoogLeNet 16 0.92 2.35 2.24 4.7 –
GoogLeNet 32 0.94 3.64 3.55 2.5 55.2
GoogLeNet 64 0.97 6.17 6.07 1.6 162.8

Inception-v3 16 1.04 3.89 3.60 7.9 –
Inception-v3 32 1.06 6.70 6.06 10.5 72.3
Inception-v3 64 1.09 11.01 10.78 2.4 183.3

Memory Usage

≤5% difference between P2P and NCCL

GPU0 consumes additional memory as it updates the weights
and broadcasts to all other GPUs

Pre-training memory usage depends on the network model
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Memory Usage: Impact of Batch Size and Network Size

Impact of Batch Size

Increase in batch size does not increase pre-training memory
usage

Increase in batch size increases the memory usage for larger
DNNs

Memory usage poses a limit on the maximum batch size that
can be used to train a DNN

We could not train Inception-v3 and ResNet with a batch size
larger than 64 and ResNet with a batch size larger than 128

Impact of Network Size

As the network size increases (i.e. increased number of layers
and neurons), the memory usage increases
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Evaluation: Weak Scaling

Run Time for Weak Scaling
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Weak Scaling

Weak Scaling vs. Strong Scaling

Smaller workloads (i.e. LeNet and AlexNet) achieve less than
12% training time for weak scaling for all batch sizes and
GPU counts

Why? Some API overheads associated with CUDA streams get
amortized

For larger workloads (i.e. ResNet, GoogLeNet, and
Inception-v3), the speedup for weak scaling is less than 17%
for all batch sizes and GPU counts

Why? Increased amount of communication leads to further
amortization in NCCL overhead
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Why Does P2P Perform Worse Than NCCL for 8 GPU
Cases?

P2P Performs Poorly!

Asymmetric link
distribution

2-hop data copy

Copy + Fetch

CPU 1 CPU 2

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

GPU 6

GPU 7

PCIe NVLink Intel Quick Path
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How Does Weak Scaling Correlate with Strong Scaling?

LeNet and AlexNet

≤12% reduction in training time for weak scaling compared to
strong scaling

Why?
Some amortization of API overheads

GoogleNet, Inception-v3, and ResNet

≤17% reduction in training time for weak scaling compared to
strong scaling

Why?

Increased amount of communication → further amortization
of NCCL overhead
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