Evaluation of Volta-based DGX-1 System Using DNN Workloads

Saiful A. Mojumder Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari, José L. Abellán, John Kim, David Kaeli, Ajay Joshi Imsam@bu.edu

BARC 2019

This work was supported in part by NSF CNS-1525474 and MINECO TIN2016-78799-P.

Motivation Objective Background

Motivation

Deep Learning is Popular!

- Achieves high accuracy!
- Solves complex problems!

Motivation Objective Background

Motivation

Training of Deep Neural Networks is Time Consuming!

- Efficient hardware and software are needed
- GPU and Multi-GPU System accelerate training

Motivation Objective Background

Objective

Understand the Characteristics of DNN Workloads

- Training of DNNs
- Compute- and communication-intensiveness

Identify the Factors Affecting the Training of DNNs

- Hardware-level limitations
- Software-level limitations

Motivation Objective Background

Background: DNN

Motivation Objective Background

Background: Training Stages of a DNN

• Forward Propagation (FP)

Motivation Objective Background

Background: Training Stages of a DNN

• Forward Propagation (FP)

 Backward Propagation (BP)

Motivation Objective Background

Background: Training Stages of a DNN

• Forward Propagation (FP)

 Backward Propagation (BP)

Weight Update (WU)

• $N_W = O_W + \alpha \times f(G)$ $N_W \rightarrow New Weight$ $O_W \rightarrow Old Weight$ $\alpha \rightarrow Constant$ $f(G) \rightarrow Averaged Gradients$

Motivation Objective Background

Background: Training Stages of a DNN

• Forward Propagation (FP)

 Backward Propagation (BP)

Weight Update (WU)

• $N_W = O_W + \alpha \times f(G)$ $N_W \rightarrow New Weight$ $O_W \rightarrow Old Weight$ $\alpha \rightarrow Constant$ $f(G) \rightarrow Averaged Gradients$

• Metric Evaluation (ME)

- Forward propagation
- Simple arithmetic operation

Motivation Objective Background

Motivation Objective Background

Motivation Objective Background

Motivation Objective Background

Motivation Objective Background

Background: Inter-GPU Communication

Motivation Objective Background

Background: Inter-GPU Communication

Motivation Objective Background

Background: Inter-GPU Communication

NVIDIA Collective Communication Library (NCCL)

- Broadcast and AllReduce
- P2P direct transfer

Evaluation Platform Workloads and Datasets

Methodology: Evaluation Platform

- Asymmetric interconnect
- Lack of direct NVLink connectivity between all GPUs
- PCle or Two-hop communication

Evaluation Platform Workloads and Datasets

Methodology: Evaluation Platform

- Asymmetric interconnect
- Lack of direct NVLink connectivity between all GPUs
- PCle or Two-hop communication

Evaluation Platform Workloads and Datasets

Methodology: Evaluation Platform

- Asymmetric interconnect
- Lack of direct NVLink connectivity between all GPUs
- PCle or Two-hop communication

Path 2

Evaluation Platform Workloads and Datasets

Methodology: Evaluation Platform

- Asymmetric interconnect
- Lack of direct NVLink connectivity between all GPUs
- PCle or Two-hop communication

Path 3

Evaluation Platform Workloads and Datasets

Methodology: Evaluation Platform

Path 3

Evaluation Platform Workloads and Datasets

Methodology: Workloads and Datasets

DNNs

- 5 different DNNs: LeNet, AlexNet, GoogLeNet, Inception-v3, and ResNet
- We perform training for one epoch

Network	Layers	Conv Layers	Incep Layers	FC Layers	Weights
LeNet	5	2	0	2	60K
AlexNet	8	5	0	3	60M
GoogLeNet	22	3	9	1	4M
Inception-v3	48	7	11	1	24M
ResNet	110	107	0	1	55M

Evaluation Platform Workloads and Datasets

Methodology: Workloads and Datasets

Scaling

- Strong Scaling
 - Increased GPU count
 - Fixed dataset
- Weak Scaling
 - Increased GPU count
 - Increased dataset

Dataset

- A subset of images from the Imagenet dataset
- Strong scaling– 256K images
- Weak scaling- 256K, 512K, 1M and 2M images for 1, 2, 4, and 8 GPUs, respectively
- Batch sizes- 16, 32, and 64

Training Time Breakdown of Training Time Memory usage Analysis

Questions We Address

- Do the workloads scale as GPU count increases?
- Does P2P always perform worse than NCCL?
- What is the impact of network size on training time?
- What is the impact of batch size on training time?
- How do different stages in the training process scale with GPU count, batch size and network size?
- What is the impact of GPU memory on training?
- How does weak scaling correlate with strong scaling?

Training Time Breakdown of Training Time Memory usage Analysis

Do the Workloads Scale with GPU Count?

- Not linearly!
- How well do they scale?
 - Depends!
 - DNN
 - Communication Method

Training Time Breakdown of Training Time Memory usage Analysis

Do the Workloads Scale with GPU Count?

LeNet: Batch Size of 16

- P2P: 1.62×, 2.37×, and 3.36× for 2, 4, and 8 GPUs, respectively
- NCCL: 1.56×, 2.27×, and 2.77× for 2, 4, and 8 GPUs, respectively

LeNet Does Not Scale Well!

• Why? Small number of layers!

Training Time Breakdown of Training Time Memory usage Analysis

Does NCCL Always Outperform P2P?

LeNet: Batch Size of 16

- P2P: 1.62×, 2.37×, and 3.36× for 2, 4, and 8 GPUs, respectively
- NCCL: 1.56×, 2.27×, and 2.77× for 2, 4, and 8 GPUs, respectively

LeNet Does Not Scale Well!

• Why? Small number of layers!

P2P Outperforms NCCL!

• Why? NCCL overhead!

Training Time Breakdown of Training Time Memory usage Analysis

What is the Impact of Network Size on Training Time?

GoogLeNet, Inception-v3 and ResNet: Batch size of 16

- P2P: <1.5×, <2.3×, <3× for 2, 4, and 8 GPUs, respectively
- NCCL: <1.8×, <2.9×, <4.4× for 2, 4, and 8 GPUs, respectively

Scale Better Than LeNet!

• Why? Significantly larger!

NCCL Outperforms P2P!

• Why? Amortization of Overhead!

Training Time Breakdown of Training Time Memory usage Analysis

How Much is the NCCL Overhead?

Measurement	ı	Network	Batch Size	(%) NCCL Overhead
Erom 16% to 32% additional overhead for	LT	LeNet	16	16.4
			32	24
NCCL compared to P2P			64	26.7
		AlexNet	16	21.8
• Smaller workload \rightarrow More overhead			32	21.8
			64	31.8
		ResNet	16	20.1
Source of NCCL Overhead			32	22.9
Different courses and as from DOD			64	19.3
• Different source codes from P2P		GoogLeNet	16	18.7
 Different data transference hander from 			32	17.5
• Different data transfer mechanism from			64	16.2
P2P		Inception-v3	16	16.9
			32	19.4
 Different CUDA API from P2P 			64	18.9

Training Time Breakdown of Training Time Memory usage Analysis

What is the Impact of Batch Size on Training Time?

For Both P2P and NCCL

- Linear reduction in training time!
- True for all GPU counts!
- Why?
 - Fewer batches per GPU
 - More computation per batch
 - Fewer data transfers
 - Constant amount of data per batch

Training Time Breakdown of Training Time Memory usage Analysis

How Do Different Stages in the Training Process Scale?

FP+BP and WU Breakdown

- FP+BP
 - Compute-intensive
 - Only computation and no GPU-to-GPU data transfer

WU

- Communication-intensive
- Transfer of gradients and weights
- Negligible amount of computation

Training Time Breakdown of Training Time Memory usage Analysis

What Is the Impact of GPU Count on FP+BP and WU?

Impact on LeNet and AlexNet

- GPU count $1 \rightarrow 2$: >2× improvement in FP+BP time
- GPU count 2 \rightarrow 4 \rightarrow 8: Non-linear decrease in the FP+BP time
 - Why?
 - Low GPU compute utilization!
- ~Linear decrease in WU time!
 - Why?
 - Decrease in batches each GPU processes.

Training Time Breakdown of Training Time Memory usage Analysis

What Is the Impact of Network Size on FP+BP and WU?

Impact on Larger Workloads

- Near linear speedup of FP+BP stages
 - Why?
 - Increased GPU compute utilization!
- Better speedup in WU!
 - Why?
 - More weights per layer
 - Better NVLink BW utilization!

BARC 2019

Training Time Breakdown of Training Time Memory usage Analysis

Memory Usage

- \leq 5% difference between P2P and NCCL
- GPU0 consumes additional memory!
- \bullet Pre-training Memory Usage \approx Memory for Network Model
- Training Memory Usage \approx Memory for Network Model + Memory for outputs

Training Time Breakdown of Training Time Memory usage Analysis

What Is the Impact of Batch Size and Network Size on Memory Usage?

Impact of Batch Size

- Negligible increase in pre-training memory usage
- A limit on the maximum batch size
 - Inception-v3: No more than 64!
 - ResNet: No more than 128!

Impact of Network Size

• Larger network \rightarrow More memory

Accelerating DNN Training Summary

Accelerating DNN Training

Hardware-Level Improvements

- More powerful GPUs!
- More efficient interconnect network!
- More memory capacity!

Software-Level Improvements

- Reduction in overhead
- Development of better scheduling mechanism
- Improvement of high level frameworks (such as MXNet)
- Efficient distribution of data
- Improvement in algorithm

Accelerating DNN Training Summary

Summary

Contributions

- Comparison between two different multi-GPU communication methods for training DNNs
- Breakdown of training time into computation- and communication-intensive portion
- Demonstration of the impact of GPU memory
- Evaluation of strong and weak scaling
- Guidelines for designing future hardware and software

Evaluation of Volta-based DGX-1 System Using DNN Workloads

Saiful A. Mojumder Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari, José L. Abellán, John Kim, David Kaeli, Ajay Joshi Imsam@bu.edu

BARC 2019

This work was supported in part by NSF CNS-1525474 and MINECO TIN2016-78799-P.

Methodology: Framework and Tools

Framework and Libraries

- NVIDIA container image of MXNet, release 18.04
- CUDA 9.0.176
- cuBLAS 9.0.333
- NCCL 2.1.15

Profiler and Tools

- nvprof
- nvidia-smi

Evaluation: P2P vs. NCCL

Average Run Time

Saiful A. Mojumder

BARC 2019

P2P vs. NCCL: Impact of GPU Count

AlexNet: Batch Size of 16

- Achieves speedup similar to LeNet!
 - Why?
 - Still small number of layers (5 convolution layers)!

FP+BP and WU Breakdown: Batch Size

Increase in Batch Size

- More computation per batch
- Fewer synchronizations
- Less time needed for WU

Memory Usage

Network	Batch	Pre-training	Training	Training	Additional Mem. Usage	Increase in Mem. Usage
	Size	GPUz (GB)	GPU0 (GB)	GPUx (GB)	in GPU0 w.r.t. GPUx (%)	w.r.t. the Batch Size of 16 (%)
LeNet	16	1.37	2.76	1.96	41.1	-
LeNet	32	1.38	2.84	2.04	39.4	3.0
LeNet	64	1.40	2.89	2.36	22.7	4.8
AlexNet	16	1.24	2.15	1.55	39.2	-
AlexNet	32	1.25	2.36	1.76	34.5	9.9
AlexNet	64	1.27	2.97	2.37	25.6	38.2
ResNet	16	1.08	3.62	3.29	10.1	-
ResNet	32	1.11	5.66	5.63	6.2	56.1
ResNet	64	1.13	9.48	9.15	3.5	161.5
GoogLeNet	16	0.92	2.35	2.24	4.7	-
GoogLeNet	32	0.94	3.64	3.55	2.5	55.2
GoogLeNet	64	0.97	6.17	6.07	1.6	162.8
Inception-v3	16	1.04	3.89	3.60	7.9	-
Inception-v3	32	1.06	6.70	6.06	10.5	72.3
Inception-v3	64	1.09	11.01	10.78	2.4	183.3

Memory Usage

- \leq 5% difference between P2P and NCCL
- GPU0 consumes additional memory as it updates the weights and broadcasts to all other GPUs
- Pre-training memory usage depends on the network model

Memory Usage: Impact of Batch Size and Network Size

Impact of Batch Size

- Increase in batch size does not increase pre-training memory usage
- Increase in batch size increases the memory usage for larger DNNs
- Memory usage poses a limit on the maximum batch size that can be used to train a DNN
 - We could not train Inception-v3 and ResNet with a batch size larger than 64 and ResNet with a batch size larger than 128

Impact of Network Size

• As the network size increases (i.e. increased number of layers and neurons), the memory usage increases

Evaluation: Weak Scaling

Run Time for Weak Scaling

BARC 2019

Weak Scaling

Weak Scaling vs. Strong Scaling

- Smaller workloads (i.e. LeNet and AlexNet) achieve less than 12% training time for weak scaling for all batch sizes and GPU counts
 - Why? Some API overheads associated with CUDA streams get amortized
- For larger workloads (i.e. ResNet, GoogLeNet, and Inception-v3), the speedup for weak scaling is less than 17% for all batch sizes and GPU counts
 - Why? Increased amount of communication leads to further amortization in NCCL overhead

Why Does P2P Perform Worse Than NCCL for 8 GPU Cases?

P2P Performs Poorly!

- Asymmetric link distribution
- 2-hop data copy
- Copy + Fetch

Why Does P2P Perform Worse Than NCCL for 8 GPU Cases?

- Asymmetric link distribution
- 2-hop data copy
- Copy + Fetch

Why Does P2P Perform Worse Than NCCL for 8 GPU Cases?

P2P Performs Poorly!

- Asymmetric link distribution
- 2-hop data copy
- Copy + Fetch

How Does Weak Scaling Correlate with Strong Scaling?

LeNet and AlexNet

- $\leq 12\%$ reduction in training time for weak scaling compared to strong scaling
 - Why?

Some amortization of API overheads

GoogleNet, Inception-v3, and ResNet

- \leq 17% reduction in training time for weak scaling compared to strong scaling
 - Why?
 - $\bullet\,$ Increased amount of communication $\rightarrow\,$ further amortization of NCCL overhead