
Formally Verifying Many RISC-V
Implementations with One
Page of Code

(seriously, we did!)
Steve Hoover
Redwood EDA

1/25/2019 1

Agenda

• WARP-V

• Design Methodology

• Comparison

• Formal Verification

• Methodology

• Analysis

• Wrap-Up

21/25/2019

WARP-V

Goal: To showcase the flexibility of “transaction-level

design”

IP needs to be flexible, but:

● Small conceptual variation requires extensive RTL

parameterization of:
○ staging (flip flops)

○ stitching through hierarchy

○ clock gating/enabling

○ etc.

● SystemC+HLS is not ideal for CPUs, with tight

cycle-level interactions

Low-Power
1-Stage

FPGA

Mid-Range
7-Stage

ASIC

Approach

Macro Preprocessor (M4) provides:

● parameterization (incl. staging)

● component selection

● code generation

Transaction-Level Verilog (TL-X.org)
implies from context:

● staging (flip flops)

● stitching through hierarchy

● clock gating/enabling

⇒ No need to parameterize details

 (or code them at all)

“Swiss Cheese” CPU

Config

ISA = ...
BrPred = ...
...

Params

WordWidth = ...
MemSize = …
...

Staging

Fetch = 1
Decode = 2
Execute = 3
...

BrPred

Dec Exe WB

TL-VerilogVerilog

ISA

https://www.gnu.org/software/m4/m4.html
http://tl-x.org/

Developed Online (makerchip.com)

WARP-V

A
L
U

IMem
Rd DMem Rd/Wr

RF
Rd

+

pend. replay
PC

reg. byp.

RF
Wr

ld rtn

br. target

+

Dec

P
C

p
e
n
d

+1

@rslt @wb@exe@rd@tgt@dec@fet@pc

DMem Rd/Wr

WARP-V

A
L
U

IMem
Rd DMem Rd/Wr

RF
Rd

+

pend. replay
PC

reg. byp.

RF
Wr

ld rtn

br. target

+

Dec

P
C

p
e
n
d

+1

DMem Rd/Wr

@0 @1 @2 @3 @4 @5

Logic comparison of main CPU pipeline (as apples-to-apples as possible)

• All three express RTL detail

• WARP-V in TL-Verilog is slightly smaller and much more flexible

picorv32 Rocket WARP-V

Language Verilog Chisel TL-Verilog

Construct. Language Verilog preproc. Scala M4 (plus Perl)

Core pipeline ~5 stages (unpipelined) 5 stages 1-7 stages

Lines of code ~983 ~944 ~811

Comparison

Verification Methodology

● First demonstration of TL-Verilog for verification modeling.

● WARP-V brought to life in 1.5 wks. using an 11-instruction test program

w/ assembler and test program also in M4+TL-Verilog. (Jan 2018)

● Remaining verification done by Ákos Hadnagy in Google Summer of

Code 2018

● Uses open-source formal verification tools: RISCV-Formal by Clifford

Wolf

Verification Modeling

A
L
U

IMem
Rd DMem Rd/Wr

RF
Rd

+

pend. replay
PC

reg. byp.

RF
Wr

ld rtn

br. target

+

Dec

P
C

p
e
n
d

+1

@rslt @wb@exe@rd@tgt@dec@fet@pc

DMem Rd/Wr

riscv-
form

al

ld rtn

As Promised, 1 Page

9/11/2018 11

Code Size Comparison

Wrap-Up

● Methodology implications

○ Single, small codebase provides logic and verification of flexible IP

○ We focused on verifying the 5-stage version, others just worked (mostly)

● Futures

○ Many-core

○ Opportunities again in Google Summer of Code 2019 (ask me)

Other Things I Love to Discuss Lately

● Why open-source hardware is poised to explode

● Cloud FPGAs and hardware-accelerated web applications

● Start-up life

● Internship/co-op opportunities

