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• Bottlenecks on conventional architectures:
• Poor cache locality (pointer-chasing data structures)

• High-contention spots (contended data structures)

Concurrent Data Structures



• Bottlenecks on conventional architectures:
• Poor cache locality (pointer-chasing data structures)

• High-contention spots (contended data structures)

• Concurrency must be retained with NDP-based implementations
Liu et al. SPAA 2017:

• Naïve implementations on NDP will serialize data structure operations

• Flat-combining techniques suggested

Concurrent Data Structures



Flat-Combining (FC) Hendler et al. 2010

lock

publication list

host processor

host processor

host processor

host processor

. . .



Flat-Combining (FC) Hendler et al. 2010

add(5)

contains(3)

contains(4)

remove(7)

host processor

host processor

host processor

host processor

. . .

lock

publication list



Flat-Combining (FC) Hendler et al. 2010

host processor

host processor

host processor

host processor

. . .

lock

publication listadd(5)

contains(3)

contains(4)

remove(7)



Flat-Combining (FC) Hendler et al. 2010
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Flat-Combining with NDP Liu et al. 2017
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NDP vault
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NDP-based Skiplist
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NDP-based FIFO Queue
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Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work
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Limitations of Prior Work

NDP does not magically remove 
all DRAM access latencies!!



Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

Lightweight hardware changes significantly improve 
NDP-based data structure performance.



DRAM Access Latency
linked-list node definition:

struct node {

uint32_t key;      // 4 bytes

struct node *next; // 4 bytes

};
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DRAM Access Latency
linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}
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DRAM Access Latency
linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

DRAM bank

key next

move burst containing node->key
to memory controller/NDP core

2



DRAM Access Latency

DRAM bank

key next

linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

repeated for node->next1 2,

1
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Memory Controller Design
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Operation throughput = # data structure operations / second

NDP data buffer compared against:

• NDP original: NDP-based implementation w/o hardware change

• Host FC: host-based equivalent of NDP-based algorithm

• Host-based state-of-the-art concurrent data structure

Results
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Linked-List Results
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Skiplist Results
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Skiplist Results
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FIFO Queue Results
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High performance concurrent data structures w/ NDP

• NDP does not remove DRAM access latencies completely

• Lightweight HW change significantly improves performance

• Data buffer in memory controller acts as single block cache

• Performance improvement compared to w/o data buffer:
50% (linked-list), 17% (skiplist), 5% (FIFO queue) 

Summary


