
Hardware-Software Coordination for

High-Performance Concurrent Data Structures

with Near-Data-Processing

Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, Iris Bahar

1/25/2019

Boston Area Architecture Workshop

Near-Data-Processing (NDP)

host
processor

memory

data request

data

Near-Data-Processing (NDP)

host
processor

memory
near-data
compute

unit

computation offload

computation result

data request

data

Near-Data-Processing (NDP)

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

DRAM
bank

mem ctrl mem ctrl

NDP core NDP core

crossbar

connection to host processors

T
S
V

T
S
V

T
S
V

T
S
V

mem ctrl mem ctrl

NDP core NDP core

NDP vault NDP vault NDP vault NDP vault

• Bottlenecks on conventional architectures:
• Poor cache locality (pointer-chasing data structures)

• High-contention spots (contended data structures)

Concurrent Data Structures

• Bottlenecks on conventional architectures:
• Poor cache locality (pointer-chasing data structures)

• High-contention spots (contended data structures)

• Concurrency must be retained with NDP-based implementations
Liu et al. SPAA 2017:

• Naïve implementations on NDP will serialize data structure operations

• Flat-combining techniques suggested

Concurrent Data Structures

Flat-Combining (FC) Hendler et al. 2010

lock

publication list

host processor

host processor

host processor

host processor

. . .

Flat-Combining (FC) Hendler et al. 2010

add(5)

contains(3)

contains(4)

remove(7)

host processor

host processor

host processor

host processor

. . .

lock

publication list

Flat-Combining (FC) Hendler et al. 2010

host processor

host processor

host processor

host processor

. . .

lock

publication listadd(5)

contains(3)

contains(4)

remove(7)

Flat-Combining (FC) Hendler et al. 2010

host processor

host processor

host processor

host processor

. . .

publication listadd(5)

contains(3)

contains(4)

remove(7)

lock
This processor executes
all accumulated operations

Flat-Combining with NDP Liu et al. 2017

add(5)

contains(3)

contains(4)

remove(7)

host processor

host processor

host processor

host processor

. . .

publication list

NDP core

NDP vault

host processorhost processor host processor host processor. . .

1 4 6 8 10 11 12 26202

publication
list

NDP core

add(5)

5

1

contains(7)2
remove(11)3

X
contains(20)4

remove(11)contains(7) add(5) contains(20)
12 34

remove(11)contains(7) add(5) contains(20)

NDP-based Linked-List Liu et al. 2017

NDP-based Skiplist

1

1

1

1

4

4

43 6

8

8

10

10

10

10 11

12

12 26

20

20

20

20

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

contains(7) remove(4) contains(13) add(21)

NDP core 2NDP core 1

Liu et al. 2017

NDP-based FIFO Queue

NDP vault 1 NDP vault 2 NDP vault 3

NDP core 3

host processorhost processor host processor host processor. . .

deq() enq(32) enq(21)

NDP core 2NDP core 1

NDP vault 4

NDP core 4

deq()

89

34

1

58

91

27

33

42

77

102

5

32

21

head

tail

Liu et al. 2017

Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

NDP does not magically remove
all DRAM access latencies!!

Relied only on theoretical analysis with simple assumptions:

1. Overlooked cache impacts in host-based data structures

2. Overly optimistic assumptions on NDP core’s data access

Limitations of Prior Work

Lightweight hardware changes significantly improve
NDP-based data structure performance.

DRAM Access Latency
linked-list node definition:

struct node {

uint32_t key; // 4 bytes

struct node *next; // 4 bytes

};

DRAM Access Latency
linked-list node definition:

struct node {

uint32_t key; // 4 bytes

struct node *next; // 4 bytes

}; DRAM bank

key next

DRAM Access Latency
linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

DRAM bank

key next

DRAM Access Latency
linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

DRAM bank

key next1 activate row containing node->key

DRAM Access Latency
linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

DRAM bank

key next

move burst containing node->key
to memory controller/NDP core

2

DRAM Access Latency

DRAM bank

key next

linked-list traversal:

while (curr_node->key < param){

curr_node = curr_node->next;

}

repeated for node->next1 2,

1

2

Memory Controller Design

R V

tag register

data buffer

memory controller

NDP
core

NDP
vault

DRAM
read queue

Memory Controller Design

read request
requested address: R V

tag register

data buffer

memory controller

NDP
core

NDP
vault

DRAM
read queue

1

2

Memory Controller Design

read request
requested address: R V

tag register

data buffer

memory controller

NDP
core

NDP
vault

DRAM
read queue

1

2

3

4

5

Operation throughput = # data structure operations / second

NDP data buffer compared against:

• NDP original: NDP-based implementation w/o hardware change

• Host FC: host-based equivalent of NDP-based algorithm

• Host-based state-of-the-art concurrent data structure

Results

Operation throughput = # data structure operations / second

NDP data buffer compared against:

• NDP original: NDP-based implementation w/o hardware change

• Host FC: host-based equivalent of NDP-based algorithm

• Host-based state-of-the-art concurrent data structure

Results

Linked-List Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
o

p
s/

se
co

n
d

)

threads

NDP data buffer

NDP original

host lazy-lock

host FC

Linked-List Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
o

p
s/

se
co

n
d

)

threads

NDP data buffer

NDP original

host lazy-lock

host FC

Skiplist Results

0

500000

1000000

1500000

2000000

2500000

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
o

p
s/

se
co

n
d

)

threads

host lock-free

8part NDP data buffer

8part NDP original

8part host FC

Skiplist Results

0

500000

1000000

1500000

2000000

2500000

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
o

p
s/

se
co

n
d

)

threads

host lock-free

8part NDP data buffer

8part NDP original

8part host FC

Skiplist Results

0

200000

400000

600000

800000

1000000

1200000

1400000

0 2 4 6 8 10o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
o

p
s/

se
co

n
d

)

threads

8part NDP
data buffer

8part NDP
original

host LF
128kB/4MB

host LF
64kB/2MB

host LF
32kB/1MB

host LF
8kB/256kB

host LF
1kB/32kB

FIFO Queue Results

0

5

10

15

20

25

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
 m

ill
io

n
 o

p
s/

se
co

n
d

)

threads

host LF (array)

host LF (list)

host dual FC (array)

host dual FC (list)

NDP original

NDP data buffer

FIFO Queue Results

0

5

10

15

20

25

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
 m

ill
io

n
 o

p
s/

se
co

n
d

)

threads

host LF (array)

host LF (list)

host dual FC (array)

host dual FC (list)

NDP original

NDP data buffer

FIFO Queue Results

0

5

10

15

20

25

0 2 4 6 8 10

o
p

er
at

io
n

 t
h

ro
u

gh
p

u
t

(#
 m

ill
io

n
 o

p
s/

se
co

n
d

)

threads

host LF (array)

host LF (list)

host dual FC (array)

host dual FC (list)

NDP original

NDP data buffer

High performance concurrent data structures w/ NDP

• NDP does not remove DRAM access latencies completely

• Lightweight HW change significantly improves performance

• Data buffer in memory controller acts as single block cache

• Performance improvement compared to w/o data buffer:
50% (linked-list), 17% (skiplist), 5% (FIFO queue)

Summary

